4.7 Article

High internal phase Pickering emulsions stabilized by co-assembled rice proteins and carboxymethyl cellulose for food-grade 3D printing

期刊

CARBOHYDRATE POLYMERS
卷 273, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.carbpol.2021.118586

关键词

Rice proteins; Carboxymethyl cellulose; Substitution degree; High internal phase Pickering emulsions; 3D printing

资金

  1. National Natural Science Foun-dation of China [31901602, 31778198]
  2. Natural Sci-ence Foundation of Jiangsu Province, China [BK20180614]

向作者/读者索取更多资源

This study utilized high internal phase Pickering emulsions stabilized by protein-polysaccharide complexes as inks for food-grade three-dimensional printing (3DP), showing outstanding biphasic wettability and interfacial tension reduction. By tuning the properties of the complexes, the HIPPEs exhibited controllable injectability and printability during 3DP, with RCs stabilized HIPPEs showing favorable printing resolution, hardness, adhesiveness, and chewiness.
In this study, high internal phase Pickering emulsions (HIPPEs) stabilized by protein-polysaccharide complexes were used as inks for food-grade three-dimensional printing (3DP). The complexes (RCs) structured by synergistic interactions between rice proteins (RPs) and carboxymethyl cellulose (CMC) displayed outstanding biphasic wettability with excellent ability to reduce the oil/water interfacial tension. The interfacial structures formed by RCs provided a steric barrier and sufficient electrostatic repulsion, preventing droplet coalescence against heating treatment as well as long-term storage. Moreover, the rheological behaviors of the HIPPEs can be tuned by the substitution degree (DS) of CMC for tailorable hydrophobic/hydrophilic properties of RCs, allowing their controllable injectability and printability during 3DP. The HIPPEs stabilized by RCs with a DS 1.2 showed the most favorable printing resolution, hardness, adhesiveness, and chewiness. Associating the hydrophobic RPs with hydrophilic CMC, our study enabled on-demand amphiphilicity of RCs for effective stabilization of HIPPEs that can be manipulated for 3DP.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据