4.7 Article

Emission characteristics and quantitative health risk assessment of bioaerosols in an indoor toilet after flushing under various ventilation scenarios

期刊

BUILDING AND ENVIRONMENT
卷 207, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.buildenv.2021.108463

关键词

Quantitative microbial risk assessment; Annual probability of infection; Diseases burden; Size distribution; Concentration; Monte Carlo simulation

资金

  1. National Natural Science Foundation of China [51608497]
  2. Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) [CUGGC07]

向作者/读者索取更多资源

The research found that initially, the highest and lowest bioaerosol concentrations were found in poor and combined ventilation scenarios, respectively. The bioaerosol concentration in the mechanical ventilation scenario was lower compared to the natural ventilation scenario.
In the indoor environment, toilet is one of the primary sources of bioaerosol because flushing events can disturb stool materials. Bioaerosol exposure has a significant impact on human health. Therefore, this research focused on systematical investigation of Staphylococcus aureus bioaerosol emission characteristics in an indoor toilet after flushing with time. Then, annual probability of infection and disease burden with time under various ventilation scenarios were determined using a Monte Carlo simulation-based quantitative microbial risk assessment. The results showed that at the initial phase, the highest and lowest bioaerosol concentrations were found in poor and combined ventilation scenarios, respectively. The bioaerosol concentration in natural ventilation scenario was 1.1 times higher than that in mechanical ventilation scenario. However, a decreasing trend was observed after flushing. The adult male's health risks were consistently higher than those of all other exposed persons. However, the maximum and minimum health risks were observed in the poor and combined ventilation scenario, respectively. The health risks in the mechanical ventilation scenario were lower than those in the natural ventilation scenario. However, the health infection risk varied with time: it was unbearable to the U.S. Envi-ronmental Protection Agency benchmark at 0 min-15 min after flushing, but it was tolerable after flushing 35 min. Moreover, the disease health burdens were below the World Health Organization benchmark after flushing 20 min to 35 min. This research delivered novel data and provide a guideline for controlling the essential health threats from bioaerosol emissions in various toilet usage scenarios.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据