4.7 Article

Infection probability under different air distribution patterns

期刊

BUILDING AND ENVIRONMENT
卷 207, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.buildenv.2021.108555

关键词

Air distribution; Cross-infection; Infection probability; Revised Wells-Riley model

向作者/读者索取更多资源

Infectious diseases have caused significant harm and economic losses. By studying different air distribution methods, it was found that personalized ventilation and displacement ventilation performed the best, while mixing ventilation and diffuse ceiling ventilation performed poorly.
Infectious diseases have caused significant physical harm to humans as well as enormous economic losses over the years. Effective ventilation and distribution of fresh air could help to reduce indoor cross-infection. The computational fluid dynamics (CFD) method was used in this paper to investigate airborne transmission with seven different air distribution methods. The revised Wells-Riley model, which took into account the nonuniform air distribution generated with the methods, was used to calculate the infection probability in an office room shared by ten occupants for 4 h. One of the occupants was an infector. The significance of the infector's location was studied. The obtained infection probability was compared to that obtained in the case of complete air mixing, which is uncommon in practice. Under specified conditions of this study, personalized ventilation (PV) performed the best in terms of preventing cross-infection, followed by displacement ventilation (DV), impinging jet ventilation (IJV), stratum ventilation (SV) and wall attachment ventilation (WAV). The number of infected occupants was reduced below the number obtained under the complete mixing assumption by using these air distribution methods. Mixing ventilation (MV) and diffuse ceiling ventilation (DCV) exhibited the worst performance. In comparison to the case of complete mixing the infection probability for seven out of nine susceptible occupants was higher with MV and for all occupants in the case of DCV. In SV, the position of the infector had a clear impact on the infection probability of susceptible individuals. WAV may perform better in practice if the system is well designed. The location of the exhaust outlets had a significant impact on the infection probability for DCV.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据