4.7 Article

Multi contact-based folding method for de novo protein structure prediction

期刊

BRIEFINGS IN BIOINFORMATICS
卷 23, 期 1, 页码 -

出版社

OXFORD UNIV PRESS
DOI: 10.1093/bib/bbab463

关键词

protein structure prediction; multi contact-based; noncontact information; evolutionary algorithm

资金

  1. National Nature Science Foundation of China [62173304, 61773346]
  2. Key Project of Zhejiang Provincial Natural Science Foundation of China [LZ20F030002]
  3. National Key Research and Development Program of China [2019YFE0126100]

向作者/读者索取更多资源

In this work, a multi-contact-based folding method called MultiCFold is introduced. It utilizes the detailed information from different contact maps to guide protein structure folding, and incorporates non-contact information as a supplement. Experimental results show that MultiCFold performs well in protein structure prediction.
Meta contact, which combines different contact maps into one to improve contact prediction accuracy and effectively reduce the noise from a single contact map, is a widely used method. However, protein structure prediction using meta contact cannot fully exploit the information carried by original contact maps. In this work, a multi contact-based folding method under the evolutionary algorithm framework, MultiCFold, is proposed. In MultiCFold, the thorough information of different contact maps is directly used by populations to guide protein structure folding. In addition, noncontact is considered as an effective supplement to contact information and can further assist protein folding. MultiCFold is tested on a set of 120 nonredundant proteins, and the average TM-score and average RMSD reach 0.617 and 5.815 angstrom, respectively. Compared with the meta contact-based method, MetaCFold, average TM-score and average RMSD have a 6.62 and 8.82% improvement. In particular, the import of noncontact information increases the average TM-score by 6.30%. Furthermore, MultiCFold is compared with four state-of-the-art methods of CASP13 on the 24 FM targets, and results show that MultiCFold is significantly better than other methods after the full-atom relax procedure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据