4.6 Article

Engineered osteoclasts resorb necrotic alveolar bone in anti-RANKL antibody-treated mice

期刊

BONE
卷 153, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.bone.2021.116144

关键词

MRONJ; Osteonecrosis; Denosumab; Tooth extraction; Cell therapy

资金

  1. SunStar Preventive Dentistry Award
  2. Warren G. Magnuson Scholarship of University of Washington
  3. Ananda Mahidol Foundation Scholarship of Thailand
  4. United States Department of Defense Peer Reviewed Orthopaedic Research Program Award [OR120074]
  5. National Institutes of Health [R01 HL114611, HL081785, HL62329]

向作者/读者索取更多资源

Research has shown that in a tooth extraction-triggered MRONJ model, the use of engineered osteoclasts can prevent specific pathological features of MRONJ.
Medication-related osteonecrosis of the jaw (MRONJ) is a serious side effect of antiresorptive medications such as denosumab (humanized anti-RANKL antibody), yet its pathophysiology remains elusive. It has been posited that inhibition of osteoclastic bone resorption leads to the pathological sequelae of dead bone accumulation, impaired new bone formation, and poor wound healing in MRONJ, but this hypothesis has not been definitively tested. We previously engineered myeloid precursors with a conditional receptor activator of nuclear factor kappa-B intracellular domain (iRANK cells), which differentiate into osteoclasts in response to a chemical inducer of dimerization (CID) independently of RANKL. In this study, we showed that CID-treated iRANK cells differentiated into osteoclasts and robustly resorbed mineralized surfaces even in the presence of anti-RANKL antibody in vitro. We then developed a tooth extraction-triggered MRONJ model in nude mice using anti-RANKL antibody to deplete osteoclasts. This model was used to determine whether reconstitution of engineered osteoclasts within sockets could prevent specific pathological features of MRONJ. Locally delivered iRANK cells successfully differentiated into multinucleated osteoclasts in response to CID treatment in vivo as measured by green fluorescent protein (GFP), tartrate-resistant acid phosphatase (TRAP), carbonic anhydrase II, matrix metallopeptidase 9 (MMP-9), and cathepsin K staining. Sockets treated with iRANK cells + CID had significantly more osteoclasts and less necrotic bone than those receiving iRANK cells alone. These data support the hypothesis that osteoclast deficiency leads to accumulation of necrotic bone in MRONJ.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据