4.6 Article

Rat perichondrium transplanted to articular cartilage defects forms articular-like, hyaline cartilage

期刊

BONE
卷 151, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.bone.2021.116035

关键词

Perichondrium; Articular cartilage; Injury healing; Transplantation; Chondrocyte differentiation

资金

  1. Uppsala County Council
  2. Dalarna County Council
  3. China Scholarship Council (CSC) [201507040026]
  4. Swedish Research Council [K2015-54X22 736-01-4, 201502227]
  5. Swedish Governmental Agency for Innovation Systems (Vinnova) [201401438]
  6. Marianne and Marcus Wallenberg Foundation
  7. Stockholm County Council
  8. Byggmadstare Olle Engkvist Stiftelse
  9. Swedish Society of Medicine
  10. Novo Nordisk Foundation
  11. Erik och Edith Fernstrodm Foundation for Medical Research
  12. HKH Kronprinsessan Lovisas fodrening fodr barnasjukvard
  13. Sadllskapet Barnavard
  14. Stiftelsen Frimurare Barnhuset i Stockholm
  15. Promobilia
  16. Nyckelfonden
  17. Karolinska Institutet, Stockholm, Sweden
  18. Odrebro University, Odrebro, Sweden

向作者/读者索取更多资源

The study found that perichondrium and periosteum transplanted into articular cartilage defects can be transformed into cartilaginous articular surfaces. Perichondrium transplants developed into an articular-like, hyaline cartilage, while periosteum transplants produced a less resilient fibro-cartilage.
Objective: Perichondrium autotransplants have been used to reconstruct articular surfaces destroyed by infection or trauma. However, the role of the transplanted perichondrium in the healing of resurfaced joints has not been investigated. Design: Perichondrial and periosteal tissues were harvested from rats hemizygous for a ubiquitously expressed enhanced green fluorescent protein (EGFP) transgene and transplanted into full-thickness articular cartilage defects at the trochlear groove of distal femur in wild-type littermates. As an additional control, cartilage defects were left without a transplant (no transplant control). Distal femurs were collected 3, 14, 56, 112 days after surgery. Results: Tracing of transplanted cells showed that both perichondrium and periosteum transplant-derived cells made up the large majority of the cells in the regenerated joint surfaces. Perichondrium transplants contained SOX9 positive cells and with time differentiated into a hyaline cartilage that expanded and filled out the defects with Col2a1-positive and Col1a1-negative chondrocytes and a matrix rich in proteoglycans. At later timepoints the cartilaginous perichondrium transplants were actively remodeled into bone at the transplant-bone interface and at post-surgery day 112 EGFP-positive perichondrium cells at the articular surface were positive for Prg4. Periosteum transplants initially lacked SOX9 expression and despite a transient increase in SOX9 expression and chondrogenic differentiation, remained Col1a1 positive, and were continuously thinning as periosteum-derived cells were incorporated into the subchondral compartment. Conclusions: Perichondrium and periosteum transplanted to articular cartilage defects did not just stimulate regeneration but were themselves transformed into cartilaginous articular surfaces. Perichondrium transplants developed into an articular-like, hyaline cartilage, whereas periosteum transplants appeared to produce a less resilient fibro-cartilage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据