4.6 Article

Efficient anaerobic consumption of D-xylose by E. coli BL21(DE3) via xylR adaptive mutation

期刊

BMC MICROBIOLOGY
卷 21, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12866-021-02395-9

关键词

BL21(DE3); Anaerobic fermentation; D-xylose; XylR; Adaptive mutation

资金

  1. National Research Foundation of Korea, Republic of Korea [NRF-2019R1A4A1024764, 2021R1A2C1013606]
  2. National Research Foundation of Korea [2021R1A2C1013606] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

This study demonstrates that adaptive evolution can enhance E. coli BL21(DE3) consumption rate of D-xylose, with mutations in the xylR gene controlling the expression of related genes to improve xylose utilization efficiency.
Background Microorganisms can prioritize the uptake of different sugars depending on their metabolic needs and preferences. When both D-glucose and D-xylose are present in growth media, E. coli cells typically consume D-glucose first and then D-xylose. Similarly, when E. coli BL21(DE3) is provided with both D-glucose and D-xylose under anaerobic conditions, glucose is consumed first, whereas D-xylose is consumed very slowly. Results When BL21(DE3) was adaptively evolved via subculture, the consumption rate of D-xylose increased gradually. Strains JH001 and JH019, whose D-xylose consumption rate was faster, were isolated after subculture. Genome analysis of the JH001 and JH019 strains revealed that C91A (Q31K) and C740T (A247V) missense mutations in the xylR gene (which encodes the XylR transcriptional activator), respectively, controlled the expression of the xyl operon. RT-qPCR analyses demonstrated that the XylR mutation caused a 10.9-fold and 3.5-fold increase in the expression of the xylA (xylose isomerase) and xylF (xylose transporter) genes, respectively, in the adaptively evolved JH001 and JH019 strains. A C91A adaptive mutation was introduced into a new BL21(DE3) background via single-base genome editing, resulting in immediate and efficient D-xylose consumption. Conclusions Anaerobically-adapted BL21(DE3) cells were obtained through short-term adaptive evolution and xylR mutations responsible for faster D-xylose consumption were identified, which may aid in the improvement of microbial fermentation technology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据