4.7 Article

Fabrication and Characterization of an Ammonia Gas Sensor Based on PEDOT-PSS With N-Doped Graphene Quantum Dots Dopant

期刊

IEEE SENSORS JOURNAL
卷 16, 期 16, 页码 6149-6154

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSEN.2016.2585461

关键词

Gas sensor; PEDOT-PSS; N-GQDs; ammonia

向作者/读者索取更多资源

This paper investigated a room temperature resistive ammonia gas sensor based on a conductive polymer and N-doped graphene quantum dots (N-GQDs) dopant made on a transparent substrate with electrodes. The sensor fabricated with conductive polymer showed a good sensing response that increases considerably with the addition of N-GQDs. The sensing response of the poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) to NH3 increased from 30.13% to 212.32% at 1500 ppm with the addition of 50 wt% N-GQDs. The response time of the N-GQDs doped sensor decreased to 6.8 min when compared with the sensor without N-GQDs and the stability of the sensor having combined N-GQDs and PEDOT-PSS was higher than that of the PEDOT-PSS sensor. Meanwhile, the structure and morphology of the sensing film are characterized by Fourier transform infrared spectroscopy and field emissions scanning electron microscopy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据