4.7 Article

An Empirical Study for PCA- and LDA-Based Feature Reduction for Gas Identification

期刊

IEEE SENSORS JOURNAL
卷 16, 期 14, 页码 5734-5746

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSEN.2016.2565721

关键词

Feature reduction; gas identification; PCA; LDA; electronic nose; Zynq SoC

资金

  1. National Priorities Research Program (NPRP) from the Qatar National Research Fund [5-080-2-028]

向作者/读者索取更多资源

Increasing the number of sensors in a gas identification system generally improves its performance as this will add extra features for analysis. However, this affects the computational complexity, especially if the identification algorithm is to be implemented on a hardware platform. Therefore, feature reduction is required to extract the most important information from the sensors for processing. In this paper, linear discriminant analysis (LDA) and principal component analysis (PCA)-based feature reduction algorithms have been analyzed using the data obtained from two different types of gas sensors, i.e., seven commercial Figaro sensors and in-house fabricated 4 x 4 tin-oxide gas array sensor. A decision tree-based classifier is used to examine the performance of both the PCA and LDA approaches. The software implementation is carried out in MATLAB and the hardware implementation is performed using the Zynq system-on-chip (SoC) platform. It has been found that with the 4 x 4 array sensor, two discriminant functions (DF) of LDA provide 3.3% better classification than five PCA components, while for the seven Figaro sensors, two principal components and one DF show the same performances. The hardware implementation results on the programmable logic of the Zynq SoC shows that LDA outperforms PCA by using 50% less resources as well as by being 11% faster with a maximum running frequency of 122 MHz.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据