4.7 Article

Genome-wide characterization, evolution, structure, and expression analysis of the F-box genes in Caenorhabditis

期刊

BMC GENOMICS
卷 22, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12864-021-08189-7

关键词

F-box gene family; Caenorhabditis; Copy number variation; Tandem duplication; Intron elongation; Sequence divergence

资金

  1. National Natural Science Foundation of China [31771474]

向作者/读者索取更多资源

In the Caenorhabditis genus, extensive species-specific tandem duplications and occasional gene loss drove the rapid evolution of the F-box gene family, leading to complex gene structural variation and diversified functions affecting growth and development within and among Caenorhabditis species. Functional divergence of F-box genes in Caenorhabditis species was suggested to be achieved through sub-functionalization by highly divergent stage-specific expression patterns. This study lays the foundation for future functional studies on the evolution of F-box genes in the Caenorhabditis genome.
Background F-box proteins represent a diverse class of adaptor proteins of the ubiquitin-proteasome system (UPS) that play critical roles in the cell cycle, signal transduction, and immune response by removing or modifying cellular regulators. Among closely related organisms of the Caenorhabditis genus, remarkable divergence in F-box gene copy numbers was caused by sizeable species-specific expansion and contraction. Although F-box gene number expansion plays a vital role in shaping genomic diversity, little is known about molecular evolutionary mechanisms responsible for substantial differences in gene number of F-box genes and their functional diversification in Caenorhabditis. Here, we performed a comprehensive evolution and underlying mechanism analysis of F-box genes in five species of Caenorhabditis genus, including C. brenneri, C. briggsae, C. elegans, C. japonica, and C. remanei. Results Herein, we identified and characterized 594, 192, 377, 39, 1426 F-box homologs encoding putative F-box proteins in the genome of C. brenneri, C. briggsae, C. elegans, C. japonica, and C. remanei, respectively. Our work suggested that extensive species-specific tandem duplication followed by a small amount of gene loss was the primary mechanism responsible for F-box gene number divergence in Caenorhabditis genus. After F-box gene duplication events occurred, multiple mechanisms have contributed to gene structure divergence, including exon/intron gain/loss, exonization/pseudoexonization, exon/intron boundaries alteration, exon splits, and intron elongation by tandem repeats. Based on high-throughput RNA sequencing data analysis, we proposed that F-box gene functions have diversified by sub-functionalization through highly divergent stage-specific expression patterns in Caenorhabditis species. Conclusions Massive species-specific tandem duplications and occasional gene loss drove the rapid evolution of the F-box gene family in Caenorhabditis, leading to complex gene structural variation and diversified functions affecting growth and development within and among Caenorhabditis species. In summary, our findings outline the evolution of F-box genes in the Caenorhabditis genome and lay the foundation for future functional studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据