4.7 Article

The whole-genome sequencing in predicting Mycobacterium tuberculosis drug updates susceptibility and resistance in Papua, Indonesia

期刊

BMC GENOMICS
卷 22, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12864-021-08139-3

关键词

-

资金

  1. Center for Papua Health Research and Development

向作者/读者索取更多资源

The study utilized whole-genome sequencing of TB clinical samples from Papua, Indonesia to detect mutations associated with TB-drug resistance, revealing multiple mutations in genes linked to resistance against various TB drugs. The results contribute to the surveillance of TB-drug resistance, identifying MDR samples but no XDR samples, with resistance mainly observed against the second-line drug Amikacin.
Background: Tuberculosis is one of the deadliest disease caused by Mycobacterium tuberculosis. Its treatment still becomes a burden for many countries including Indonesia. Drug resistance is one of the problems in TB treatment. However, a development in the molecular field through Whole-genome sequencing (WGS) can be used as a solution in detecting mutations associated with TB- drugs. This investigation intended to implement this data for supporting the scientific community in deeply understanding any TB epidemiology and evolution in Papua along with detecting any mutations in genes associated with TB-Drugs. Result: A whole-genome sequencing was performed on the random samples from TB Referral Laboratory in Papua utilizing MiSeq 600 cycle Reagent Kit (V3). Furthermore, TBProfiler was used for genome analysis, RAST Server was employed for annotation, while Gview server was applied for BLAST genome mapping and a Microscope server was implemented for Regions of Genomic Plasticity (RGP). The largest genome of M. tuberculosis obtained was at the size of 4,396,040 bp with subsystems number at 309 and the number of coding sequences at 4326. One sample (TB751) contained one RGP. The drug resistance analysis revealed that several mutations associated with TB-drug resistance existed. In details, mutations of rpoB gene which were identified as S450L, D435Y, H445Y, L430P, and Q432K had caused the reduced effectiveness of rifampicin; while the mutases in katG (5315T), kasA (312S), inhA (121V), and Rv1482c-fabG1 (C-15 T) genes had contributed to the resistance in isoniazid. In streptomycin, the resistance was triggered by the mutations in rpsL (K43R) and rrs (A514C, A514T) genes, and, in Amikacin, its resistance was led by mutations in rrs (A514C) gene. Additionally, in Ethambutol and Pyrazinamide, their reduced effectiveness was provoked by embB gene mutases (M306L, M306V, D1024N) and pncA (W119R). Conclusions: The results from whole-genome sequencing of TB clinical sample in Papua, Indonesia could contribute to the surveillance of TB-drug resistance. In the drug resistance profile, there were 15 Multi Drugs Resistance (MDR) samples. However, Extensively Drug-resistant (XDR) samples have not been found, but samples were resistant to only Amikacin, a second-line drug.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据