4.7 Review

Waste-to-nutrition: a review of current and emerging conversion pathways

期刊

BIOTECHNOLOGY ADVANCES
卷 53, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.biotechadv.2021.107857

关键词

Residual biomass; Biorefinery; Circular economy; Microbial protein; Insect; Novel food; Alternative feed; Bioeconomy

资金

  1. French National Research Agency , Programme Investissement d'Avenir [ANR-17-MGPA-0006]
  2. Region Occitanie [18015981]
  3. Metaprogram GLOFOODS (INRAE-CIRAD)

向作者/读者索取更多资源

Residual biomass plays a crucial role in the transition towards circular and low fossil carbon economies by providing energy, chemicals, materials, and food products or services. The review presents various waste-to-nutrition pathways and proposes a systematic framework for waste conversion. The study also categorizes different pathways and introduces a multidimensional representation of biomass suitability for nutrition sources.
Residual biomass is acknowledged as a key sustainable feedstock for the transition towards circular and low fossil carbon economies to supply whether energy, chemical, material and food products or services. The latter is receiving increasing attention, in particular in the perspective of decoupling nutrition from arable land demand. In order to provide a comprehensive overview of the technical possibilities to convert residual biomasses into edible ingredients, we reviewed over 950 scientific and industrial records documenting existing and emerging waste-to-nutrition pathways, involving over 150 different feedstocks here grouped under 10 umbrella categories: (i) wood-related residual biomass, (ii) primary crop residues, (iii) manure, (iv) food waste, (v) sludge and wastewater, (vi) green residual biomass, (vii) slaughterhouse by-products, (viii) agrifood co-products, (ix) C-1 gases and (x) others. The review includes a detailed description of these pathways, as well as the processes they involve. As a result, we proposed four generic building blocks to systematize waste-to-nutrition conversion sequence patterns, namely enhancement, cracking, extraction and bioconversion. We further introduce a multidimensional representation of the biomasses suitability as potential as nutritional sources according to (i) their content in anti-nutritional compounds, (ii) their degree of structural complexity and (iii) their concentration of macro- and micronutrients. Finally, we suggest that the different pathways can be grouped into eight large families of approaches: (i) insect biorefinery, (ii) green biorefinery, (iii) lignocellulosic biorefinery, (iv) non-soluble protein recovery, (v) gas-intermediate biorefinery, (vi) liquid substrate alternative, (vii) solid-substrate fermentation and (viii) more-out-of-slaughterhouse by-products. The proposed framework aims to support future research in waste recovery and valorization within food systems, along with stimulating reflections on the improvement of resources' cascading use.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据