4.7 Review

Microbial melanin: Recent advances in biosynthesis, extraction, characterization, and applications

期刊

BIOTECHNOLOGY ADVANCES
卷 53, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.biotechadv.2021.107773

关键词

Biomedical application; Bioremediation; Characterization; Energy production; Melanogenesis; Microbial melanin; Nanotechnology; Sunscreen

资金

  1. Scientific and Engineering Research Board (SERB), Department of Science and Technology [ECRA/2016/000788, EEQ/2016/000268]
  2. Council of Scientific and Industrial Research [MLP/0027]

向作者/读者索取更多资源

Melanin, a group of biopolymers, has potential applications in medical sciences, cosmeceutical, bioremediation, and bioelectronic applications. Biosynthesis of melanin in fungi and bacteria mainly occurs through two pathways, leading to different types of melanin with different synthesis enzymes. Research on increasing melanin yield for large-scale production is beneficial for various applications.
Melanin is a common name for a group of biopolymers with the dominance of potential applications in medical sciences, cosmeceutical, bioremediation, and bioelectronic applications. The broad distribution of these pigments suggests their role to combat abiotic and biotic stresses in diverse life forms. Biosynthesis of melanin in fungi and bacteria occurs by oxidative polymerization of phenolic compounds predominantly by two pathways, 1,8-dihydroxynaphthalene [DHN] or 3,4-dihydroxyphenylalanine [DOPA], resulting in different kinds of melanin, i.e., eumelanin, pheomelanin, allomelanin, pyomelanin, and neuromelanin. The enzymes responsible for melanin synthesis belong mainly to tyrosinase, laccase, and polyketide synthase families. Studies have shown that manipulating culture parameters, combined with recombinant technology, can increase melanin yield for largescale production. Despite significant efforts, its low solubility has limited the development of extraction procedures, and heterogeneous structural complexity has impaired structural elucidation, restricting effective exploitation of their biotechnological potential. Innumerable studies have been performed on melanin pigments from different taxa of life in order to advance the knowledge about melanin pigments for their efficient utilization in diverse applications. These studies prompted an urgent need for a comprehensive review on melanin pigments isolated from microorganisms, so that such review encompassing biosynthesis, bioproduction, characterization, and potential applications would help researchers from diverse background to understand the importance of microbial melanins and to utilize the information from the review for planning studies on melanin. With this aim in mind, the present report compares conventional and modern ideas for environment-friendly extraction procedures for melanin. Furthermore, the characteristic parameters to differentiate between eumelanin and pheomelanin are also mentioned, followed by their biotechnological applications forming the basis of industrial utilization. There lies a massive scope of work to circumvent the bottlenecks in their isolation and structural elucidation methodologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据