4.8 Article

Aptamer/AuNPs encoders endow precise identification and discrimination of lipoprotein subclasses

期刊

BIOSENSORS & BIOELECTRONICS
卷 196, 期 -, 页码 -

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2021.113743

关键词

Low-density lipoprotein (LDL); High-density lipoprotein (HDL); Very low-density lipoprotein (VLDL); Recognition; Protein profiling

资金

  1. Natural Science Foundation of China [21974018, 21727811, 22074011]
  2. Fundamental Research Funds for the Central Universities [N2005015, N2005027]
  3. Liaoning Revitalization Talents Program [XLYC1907191, XLYC1802016]

向作者/读者索取更多资源

A multiplexed sensor platform combined with an encoder system is introduced for accurate analysis of multiple lipoproteins in complex matrix, achieving highly facile and precise identification for lipoprotein subclasses. The system can accurately identify LDL at 0.05-37.5 μg/mL and 11 typical proteins including three lipoprotein subclasses in human serum, as well as different molar ratios of lipoprotein subclasses from real clinical serum samples.
Lipoproteins are composed of lipid and apolipoproteins in conjunction with noncovalent bonds. Different lipoprotein categories, particularly Low-Density Lipoprotein (LDL), High-Density Lipoprotein (HDL) and Very Low Density Lipoprotein (VLDL) disagree in roles for the occurrence and development of cardiovascular disease, and their exact discrimination are critically required. Herein, a multiplexed sensor platform combined with an encoder system is introduced for accurate analysis of multiple lipoproteins in complex matrix. Three encoders, i. e., bare AuNPs, AuNPs-anti-LDL aptamer (AuNPs-apt) and AuNPs-non-aptamer DNA (AuNPs-n), facilitate precise discrimination for lipoprotein subclasses at a fairly low level of 0.490 nM. The binding of single-stranded DNA (ssDNA) with AuNPs prevents them from gathering in a relatively higher level of salt. In targets stimuli, the weaker binding between ssDNA and AuNPs is destroyed to certain degrees depending on the differential affinities among DNA, AuNPs, and multifarious proteins. It results in distinct aggregation states of encoders to cause diverse ultraviolet absorption, which may be statistically characterized to achieve highly facile and precise identification for lipoprotein subclasses. Remarkably, LDL at 0.05-37.5 mu g/mL could be identified by the encoder system. 11 typical proteins including three lipoprotein subclasses in human serum were also precisely discriminated. Furthermore, the accurate identification of lipoprotein subclasses with different molar ratios from real clinical serum samples were obtained.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据