4.8 Article

Label-free immunosensor for cardiac troponin I detection based on aggregation-induced electrochemiluminescence of a distyrylarylene derivative

期刊

BIOSENSORS & BIOELECTRONICS
卷 192, 期 -, 页码 -

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2021.113532

关键词

Label-free immunosensor; Cardiac troponin I; Aggregation-induced; electrochemiluminescence; DPVBi; ECL mechanism

资金

  1. National Natural Science Foundation of China [22034006, 21721003, 21627808]
  2. National Key Research and Development Program of China [2016YFA0201301]
  3. Key Research Program of Frontier Sciences, CAS [QYZDY-SSW-SLH019]

向作者/读者索取更多资源

In this study, the aggregation-induced electrochemiluminescence (AIECL) of a distyrylarylene derivative, 4,4'-bis(2,2-diphenylvinyl)-1,1'-biphenyl (DPVBi), was investigated for the first time, showing significantly enhanced luminescence efficiency in organic/water mixtures. DPVBi nanobulks (DPVBi NBs) were prepared and used to develop a label-free immunosensor for cardiac troponin I (cTnI) in aqueous media, with high sensitivity and specificity.
Herein, the aggregation-induced electrochemiluminescence (AIECL) of a distyrylarylene derivative, 4,4'-bis(2,2-diphenylvinyl)-1,1'-biphenyl (DPVBi), was investigated for the first time. This luminophore exhibits significantly enhanced photoluminescence (PL) and electrochemiluminescence (ECL) emission with the increases of water content in organic/water mixtures. This high luminescence efficiency of DPVBi in aggregate state is due to the fact that the aggregates can reduce the energy loss by restricting the intramolecular motions. The ECL behavior of DPVBi in acetonitrile was investigated by ECL transients and so-called half-scan technology, where singlet singlet annihilation ECL was generated under continuous potential switching. The DPVBi nanobulks (DPVBi NBs) were prepared to improve its application in aqueous media, which could be conveniently cast on electrode surface for developing sensing platform due to its good film-forming nature. The constructed heterogeneous AIECL platform can produce reductive-oxidative and oxidative-reductive ECL by using trimethylamine (TEA) and potassium peroxodisulfate (K2S2O8) as coreactant. On the basis of the higher ECL efficiency of DPVBi NBs/TEA system, a label free immunosensor for cardiac troponin I (cTnI) was developed with the assistance of electrodeposited gold nanoparticles, and it showed a wide linear range of 20 ng/mL similar to 100 fg/mL and low detection limit of 43 fg/mL. Moreover, the constructed immunosensor also exhibited good specificity, stability and satisfied performance in practical sample analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据