4.7 Article

Ginsenoside Rg3 inhibits angiogenesis in gastric precancerous lesions through downregulation of Glut1 and Glut4

期刊

BIOMEDICINE & PHARMACOTHERAPY
卷 145, 期 -, 页码 -

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biopha.2021.112086

关键词

Gastric precancerous lesions; Ginsenoside Rg3; Pathological observation; Glucose transporters (GLUTs)

资金

  1. National Natural Science Foundation of China [81804066, 82174346, 81904178]
  2. Xinglin Scholar Research Promotion Project of Chengdu University of TCM [QNXZ2019017, QNXZ2020003]
  3. Hundred Talents Program of the Hospital of Chengdu University of Traditional Chinese Medicine [21-Y17, 20-L01, 20-Q03, 20-Q05, 20-Q08, 20-Q18]
  4. Project of Sichuan Administration of traditional Chinese Medicine [2021MS104]

向作者/读者索取更多资源

GRg3 can attenuate angiogenesis and temper microvascular abnormalities in rats with GPLs, which may be associated with its inhibition on the aberrant activation of GLUT1 and GLUT4.
Ginsenoside Rg3 (GRg3) is a ginsenoside extracted from Panax ginseng. GRg3 displays multiple pharmacological properties, such as antitumor, anti-inflammatory, antioxidative and antifibrotic properties. However, whether GRg3 inhibits angiogenesis in gastric precancerous lesions (GPLs) and the possible mechanisms remain unknown. GRg3 attenuated gastric intestinal metaplasia and gastric dysplasia, the hallmark of GPL pathology, in rats with MNNG-ammonia compound induced GPLs. Increased CD34+ microvessel density and VEGF expression, which indicate the presence of angiogenesis, were evident in the rats with GPLs. GRg3 administration reduced VEGF protein expression and CD34+ microvessel density. In addition, GRg3 was capable of attenuating microvascular abnormalities. Data analysis revealed that enhanced protein expression of GLUT1, GLUT3 and GLUT4 were present in both human and animal GPL specimens. The administration of GRg3 caused significant decreases in the mRNA and protein expression levels of GLUT1 and GLUT4 in the rats with GPLs. However, the GRg3-treated rats with GPLs did not demonstrate regulatory effects on GLUT3, GLUT6, GLUT10, and GLUT12. Consistent with in vitro results, GRg3 administration significantly reduced the protein expression levels of GLUT1 and GLUT4 in both AGS and HGC-27 human gastric cancer cells in vitro. In conclusion, GRg3 can attenuate angiogenesis and temper microvascular abnormalities in rats with GPLs, which may be associated with its inhibition on the aberrant activation of GLUT1 and GLUT4.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据