4.7 Article

Molecular classification reveals the diverse genetic and prognostic features of gastric cancer: A multi-omics consensus ensemble clustering

期刊

BIOMEDICINE & PHARMACOTHERAPY
卷 144, 期 -, 页码 -

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biopha.2021.112222

关键词

Gastric cancer; Molecular classification; Multi-omics; Overall survival; Gene mutation

资金

  1. National Natural Science Foundation of China [81972539]
  2. Key Research and Develop-ment Projects of Anhui Province [201904a07020055]

向作者/读者索取更多资源

This study identified two molecular subtypes (CS1 and CS2) of gastric cancer using multi-omics data and ten clustering algorithms, revealing differences in survival time, mutation patterns, and immune cell infiltration between the two groups. The CS2 group showed higher immunocyte infiltration and potential responses to chemotherapy, suggesting potential immunotherapeutic benefits.
Background: Globally, gastric cancer (GC) is the fifth most common tumor. It is necessary to identify novel molecular subtypes to guide patient selection for specific target therapeutic benefits. Methods: Multi-omics data, including transcriptomics RNA-sequencing (mRNA, LncRNA, miRNA), DNA methylation, and gene mutations in the TCGA-STAD cohort were used for the clustering. Ten classical clustering algorithms were executed to recognize patients with different molecular features using the MOVICS package in R. The activated signaling pathways were evaluated using the single-sample gene set enrichment analysis. The differential distribution of gene mutations, copy number alterations, and tumor mutation burden was compared, and potential responses to immunotherapy and chemotherapy were also assessed. Results: Two molecular subtypes (CS1 and CS2) were recognized by ten clustering algorithms with consensus ensembles. Patients in the CS1 group had a shorter average overall survival time (28.5 vs. 68.9 months, P = 0.016), and progression-free survival (19.0 vs. 63.9 months, P = 0.008) as compared to those in the CS2 group. Extracellular associated biological process activation was higher in the CS1 group, while the CS2 group displayed the enhanced activation of cell cycle-associated pathways. Significantly higher total mutation numbers and neoantigens were observed in the CS2 group, along with specific mutations in TTN, MUC16, and ARID1A. Higher infiltration of immunocytes was also observed in the CS2 group, reflective of the potential immunotherapeutic benefits. Moreover, the CS2 group could also respond to 5-fluorouracil, cisplatin, and paclitaxel. The similar diversity in clinical outcomes between CS1 and CS2 groups was successfully validated in the external cohorts, GSE62254, GSE26253, GSE15459, and GSE84437. Conclusion: The findings provided novel insights into the GC subtypes through integrative analysis of five -omics data by ten clustering algorithms. These could provide potential clinical therapeutic targets based on the specific molecular features.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据