4.6 Article

An improved approach for medical image fusion using sparse representation and Siamese convolutional neural network

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.bspc.2021.103357

关键词

Siamese convolutional neural network; Sparse representation; Medical imaging; Image fusion applications

向作者/读者索取更多资源

Multimodal image fusion is a contemporary branch of medical imaging that aims to improve the quality of medical images and enhance the accuracy of clinical diagnosis by combining sparse representation and Siamese Convolutional Neural Network methods. This approach effectively addresses the defects of traditional models and significantly improves the overall fused image quality.
Multimodal image fusion is a contemporary branch of medical imaging that aims to increase the accuracy of clinical diagnosis of the disease stage development. The fusion of different image modalities can be a viable medical imaging approach. It combines the best features to produce a composite image with higher quality than its predecessors and can significantly improve medical diagnosis. Recently, sparse representation (SR) and Siamese Convolutional Neural Network (SCNN) methods have been introduced independently for image fusion. However, some of the results from these approaches have recorded defects, such as edge blur, less visibility, and blocking artifacts. To remedy these deficiencies, in this paper, a smart blending approach based on a combination of SR and SCNN is introduced for image fusion, which comprises three steps as follows. Firstly, entire source images are fed into the classical orthogonal matching pursuit (OMP), where the SR-fused image is obtained using the max-rule that aims to improve pixel localization. Secondly, a novel scheme of SCNN-based K-SVD dictionary learning is re-employed for each source image. The method has shown good non-linearity behavior, contributing to increasing the fused output's sparsity characteristics and demonstrating better extraction and transfer of image details to the output fused image. Lastly, the fusion rule step employs a linear combination between steps 1 and 2 to obtain the final fused image. The results depict that the proposed method is advantageous, compared to other previous methods, notably by suppressing the artifacts produced by the traditional SR and SCNN model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据