4.7 Article

Limits and potential of combined folding and docking

期刊

BIOINFORMATICS
卷 38, 期 4, 页码 954-961

出版社

OXFORD UNIV PRESS
DOI: 10.1093/bioinformatics/btab760

关键词

-

资金

  1. Swedish National Research Council [VR-NT-2016-03798]
  2. Swedish Research Council

向作者/读者索取更多资源

The study introduces a fold-and-dock method utilizing deep learning for predicting protein-protein contact distances, which can simultaneously predict the tertiary and quaternary structure of a protein pair, outperforming traditional methods in terms of docking success rates.
Motivation: In the last decade, de novo protein structure prediction accuracy for individual proteins has improved significantly by utilising deep learning (DL) methods for harvesting the co-evolution information from large multiple sequence alignments (MSAs). The same approach can, in principle, also be used to extract information about evolutionary-based contacts across protein-protein interfaces. However, most earlier studies have not used the latest DL methods for inter-chain contact distance prediction. This article introduces a fold-and-dock method based on predicted residue-residue distances with trRosetta. Results: The method can simultaneously predict the tertiary and quaternary structure of a protein pair, even when the structures of the monomers are not known. The straightforward application of this method to a standard dataset for protein-protein docking yielded limited success. However, using alternative methods for generating MSAs allowed us to dock accurately significantly more proteins. We also introduced a novel scoring function, PconsDock, that accurately separates 98% of correctly and incorrectly folded and docked proteins. The average performance of the method is comparable to the use of traditional, template-based or ab initio shape-complementarity-only docking methods. Moreover, the results of conventional and fold-and-dock approaches are complementary, and thus a combined docking pipeline could increase overall docking success significantly. This methodology contributed to the best model for one of the CASP14 oligomeric targets, H1065.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据