4.7 Article

Transfer of small interfering RNA by electropermeabilization in tumor spheroids

期刊

BIOELECTROCHEMISTRY
卷 141, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.bioelechem.2021.107848

关键词

Electroporation; RNAi; siRNA; Spheroid; Tumor; Delivery

资金

  1. la ligue contre le cancer [20102013]
  2. seventh framework European programme OncomiR [201102]
  3. CNRS

向作者/读者索取更多资源

The ability to modulate deregulated genes by RNAi shows promise for treating certain diseases, including cancers. While in vitro studies have shown the direct transfer of negatively charged siRNA across the plasma membrane, understanding the efficiency of siRNA electrotransfer into 3D tissues remains a challenge. Nonetheless, the asymmetrical distribution of siRNA within multicellular spheroids is a key finding and suggests that spheroids could be a valuable alternative to animal experimentation.
The ability to modulate deregulated genes by RNAi provides treatment perspectives in certain diseases including cancers. Electrotransfer of oligonucleotides was studied in vitro, showing a direct transfer of negatively charged siRNA across the plasma membrane into the cytoplasm. In vivo, the feasibility of siRNA electrotransfer was demonstrated in different studies and tissues. While effective, electrotransfer of siRNA into 3D tissues still needs to be understood. Here, we evaluated the efficiency of siRNA electrotransfer and assessed its effect in 3D spheroids made of HCT116-GFP cells by confocal fluorescence microscopy and flow cytometry. Our results indicate that siRNA uptake was not uniform across 3D multicellular spheroids. The electrophoretic migration of nucleic acids upon delivery of unipolar electric field pulses could explain the asymmetry of siRNA uptake. Moreover, a gradient was observed from external layers toward the center, leading to siRNA silencing of GFP positive cells located in the outer rim. While siRNA delivery experiments on spheroids may differ from intratumoral injections, the levels of transfection in spheroids are comparable to levels observed in published studies in vivo. Taken together, our results provide fundamental information about siRNA 3D distribution during electrotransfer, indicating that multicellular spheroids remain a relevant alternative to animal experimentation. (c) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据