4.7 Review

Modeling genetic cardiac channelopathies using induced pluripotent stem cells - Status quo from an electrophysiological perspective

期刊

BIOCHEMICAL PHARMACOLOGY
卷 192, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bcp.2021.114746

关键词

Cardiac channelopathies; Disease modeling; Induced pluripotent stem cells; Differentiation; Cardiomyocytes; Electrophysiology; Arrhythmia; Ion channel

向作者/读者索取更多资源

Long QT syndrome, Brugada syndrome, and catecholaminergic polymorphic ventricular tachycardia are genetic heart diseases caused by mutations in cardiac ion channels, leading to paroxysmal arrhythmias with different clinical manifestations and functional perturbations. Abnormal sodium and calcium signaling plays a crucial role in these diseases. Patient-specific in vitro models based on induced pluripotent stem cells can help address the underlying mechanisms and develop personalized therapies.
Long QT syndrome (LQTS), Brugada syndrome (BrS), and catecholaminergic polymorphic ventricular tachycardia (CPVT) are genetic diseases of the heart caused by mutations in specific cardiac ion channels and are characterized by paroxysmal arrhythmias, which can deteriorate into ventricular fibrillation. In LQTS3 and BrS different mutations in the SCN5A gene lead to a gain-or a loss-of-function of the voltage-gated sodium channel Nav1.5, respectively. Although sharing the same gene mutation, these syndromes are characterized by different clinical manifestations and functional perturbations and in some cases even present an overlapping clinical phenotype. Several studies have shown that Na(+ )current abnormalities in LQTS3 and BrS can also cause Ca2+-signaling aberrancies in cardiomyocytes (CMs). Abnormal Ca2+ homeostasis is also the main feature of CPVT which is mostly caused by heterozygous mutations in the RyR2 gene. Large numbers of disease-causing mutations were identified in RyR2 and SCN5A but it is not clear how different variants in the SCN5A gene produce different clinical syndromes and if in CPVT Ca2+ abnormalities and drug sensitivities vary depending on the mutation site in the RyR2. These questions can now be addressed by using patient-specific in vitro models of these diseases based on induced pluripotent stem cells (iPSCs). In this review, we summarize different insights gained from these models with a focus on electrophysiological perturbations caused by different ion channel mutations and discuss how will this knowledge help develop better stratification and more efficient personalized therapies for these patients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据