4.6 Article

Intracellular trafficking pathway of albumin in glomerular epithelial cells

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2021.08.043

关键词

Podocytes; Albumin; Endocytosis; Transcytosis; Exocytosis

资金

  1. JSPS KAKENHI [18K08223]
  2. Grants-in-Aid for Scientific Research [18K08223] Funding Source: KAKEN

向作者/读者索取更多资源

The study reveals that albumin in podocytes is transported intracellularly through caveolae, entering cells with Fc receptors, moving along actin cytoskeleton, and eventually being degraded or exocytosed.
The intracellular trafficking pathway of albumin in podocytes remains controversial. We therefore analysed albumin endocytosis through caveolae, subsequent transcytosis, and exocytosis. In Western blot and immunofluorescence analysis in vitro, methyl-beta-cyclodextrin (MBCD) treatment significantly decreased the expression of caveolin-1 and albumin in cultured human podocytes after incubation with albumin; additionally, MBCD interfered with albumin endocytosis through caveolae in the experiment using Transwell plates. In the immunofluorescence analysis, albumin was incubated with cultured human podocytes, and colocalisation analysis with organelles and cytoskeletons in the podocytes showed that albumin particles colocalised with caveolin-1 and Fc-receptor but not clathrin in endocytosis, colocalised with actin cytoskeleton but not microtubules in transcytosis, and colocalised with early endosomes and lysosomes but not proteasome, endoplasmic reticulum, or Golgi apparatus. In the electron microscopic analysis of podocytes in nephrotic syndrome model mice, gold-labelled albumin was shown as endocytosis, transcytosis, and exocytosis with caveolae. These results indicate the intracellular trafficking of albumin through podocytes. Albumin enters through caveolae with the Fc-receptor, moves along actin, and reaches the early endosome, where some of them are sorted for lysosomal degradation, and others are directly transported outside the cells through exocytosis. This intracellular pathway may be a new aetiological hypothesis for albuminuria. (c) 2021 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据