4.6 Review

Regulation of STAT3 and its role in cardioprotection by conditioning: focus on non-genomic roles targeting mitochondrial function

期刊

BASIC RESEARCH IN CARDIOLOGY
卷 116, 期 1, 页码 -

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00395-021-00898-0

关键词

Ca2+ regulation; Ischemia reperfusion injury; Mitochondrial permeability transition pore; Reactive oxygen species; RISK pathway; SAFE pathway; STAT3; STAT5

资金

  1. Universita degli Studi di Torino within the CRUI-CARE Agreement

向作者/读者索取更多资源

Cardioprotective conditioning strategies such as pre- and post-conditioning maneuvers play a crucial role in stimulating pro-survival pathways like STAT3 for the preservation of cardiac health. The importance of STAT3 as a promoter of metabolic network and its interactions with processes aimed at maintaining mitochondrial functions have been highlighted in understanding cardioprotection phenomena.
Ischemia-reperfusion injury (IRI) is one of the biggest challenges for cardiovascular researchers given the huge death toll caused by myocardial ischemic disease. Cardioprotective conditioning strategies, namely pre- and post-conditioning maneuvers, represent the most important strategies for stimulating pro-survival pathways essential to preserve cardiac health. Conditioning maneuvers have proved to be fundamental for the knowledge of the molecular basis of both IRI and cardioprotection. Among this evidence, the importance of signal transducer and activator of transcription 3 (STAT3) emerged. STAT3 is not only a transcription factor but also exhibits non-genomic pro-survival functions preserving mitochondrial function from IRI. Indeed, STAT3 is emerging as an influencer of mitochondrial function to explain the cardioprotection phenomena. Studying cardioprotection, STAT3 proved to be crucial as an element of the survivor activating factor enhancement (SAFE) pathway, which converges on mitochondria and influences their function by cross-talking with other cardioprotective pathways. Clearly there are still some functional properties of STAT3 to be discovered. Therefore, in this review, we highlight the evidence that places STAT3 as a promoter of the metabolic network. In particular, we focus on the possible interactions of STAT3 with processes aimed at maintaining mitochondrial functions, including the regulation of the electron transport chain, the production of reactive oxygen species, the homeostasis of Ca2+ and the inhibition of opening of mitochondrial permeability transition pore. Then we consider the role of STAT3 and the parallels between STA3/STAT5 in cardioprotection by conditioning, giving emphasis to the human heart and confounders.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据