4.6 Article

Long-period Ap stars discovered with TESS data: The northern ecliptic hemisphere

期刊

ASTRONOMY & ASTROPHYSICS
卷 660, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/202142311

关键词

stars; chemically peculiar; stars; magnetic field; stars; rotation; stars; oscillations

资金

  1. NASA's Science Mission directorate
  2. Danish National Research Foundation [DNRF106]
  3. ESA PRODEX [PEA 4000119301]
  4. Stellar Astrophysics Centre (SAC) at Aarhus University

向作者/读者索取更多资源

The rotation periods of magnetic Ap stars vary greatly, with some having rotation periods of several tens to hundreds of years. The physical processes that lead to this differentiation are not well understood. Studying Ap stars with extremely long rotation periods provides insights into their origin and evolution. This study uses a systematic search based on TESS photometric data to identify ssrAp stars independently of their magnetic field strengths, and confirms that Ap stars with weak magnetic fields tend to have less frequent super-slow rotation.
The rotation periods of the magnetic Ap stars span five to six orders of magnitude. While it is well established that period differentiation must have taken place at the pre-main sequence stage, the physical processes that lead to it remain elusive. The existence of Ap stars that have rotation periods of tens to hundreds of years is particularly intriguing, and their study represents a promising avenue to gain additional insight into the origin and evolution of rotation in Ap stars. Historically, almost all the longest period Ap stars known have been found to be strongly magnetic; very few weakly magnetic Ap stars with very long periods have been identified and studied. To remedy that, we showed how a systematic search based on the analysis of TESS photometric data could be performed to identify super-slowly rotating Ap (ssrAp) stars independently of the strengths of their magnetic fields, with the intention to characterise the distribution of the longest Ap star rotation periods in an unbiased manner. We successfully applied this method to the analysis of the TESS 2-min cadence observations of Ap stars of the southern ecliptic hemisphere. For our present study, we applied the same approach to the analysis of the TESS 2-min cadence observations of Ap stars of the northern ecliptic hemisphere. We confirm that the technique leads to the reliable identification of ssrAp star candidates in an unbiased manner. We find 67 Ap stars with no rotational variability in the northern ecliptic hemisphere TESS data. Among them, 46 are newly identified ssrAp star candidates, which is double the number found in the southern ecliptic hemisphere. We confirm that super-slow rotation tends to occur less frequently in weakly magnetic Ap stars than in strongly magnetic stars. We present new evidence of the existence of a gap between similar to 2 kG and similar to 3 kG in the distribution of the magnetic field strengths of long period Ap stars. We also confirm that the incidence of roAp stars is higher than average in slowly rotating Ap stars. We report the unexpected discovery of nine definite and five candidate delta Sct stars, and of two eclipsing binaries. This work paves the way for a systematic, unbiased study of the longest period Ap stars, with a view to characterise the correlations between their rotational, magnetic, and pulsational properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据