4.6 Article

Angular momentum transport in a contracting stellar radiative zone embedded in a large-scale magnetic field

期刊

ASTRONOMY & ASTROPHYSICS
卷 661, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/202141613

关键词

instabilities; magnetohydrodynamics (MHD); methods; numerical; stars; magnetic field; stars; rotation; stars; interiors

资金

  1. Institut Universitaire de France

向作者/读者索取更多资源

This study aims to investigate the interaction between flows and magnetic fields in a contracting radiative zone, and their influence on the rotational history of stars. Numerical simulations show that large-scale magnetic fields can alter the flow structure and potentially lead to instability. These findings provide a new explanation for the angular momentum transport problem during rapid stellar evolution.
Context. Some contracting or expanding stars are thought to host a large-scale magnetic field in their radiative interior. By interacting with the contraction-induced flows, such fields may significantly alter the rotational history of the star. They thus constitute a promising way to address the problem of angular momentum transport during the rapid phases of stellar evolution. Aims. In this work, we aim to study the interplay between flows and magnetic fields in a contracting radiative zone. Methods. We performed axisymmetric Boussinesq and anelastic numerical simulations in which a portion of the radiative zone was modelled by a rotating spherical layer, stably stratified and embedded in a large-scale (either dipolar or quadrupolar) magnetic field. This layer is subject to a mass-conserving radial velocity field mimicking contraction. The quasi-steady flows were studied in strongly or weakly stably stratified regimes relevant for pre-main sequence stars and for the cores of subgiant and red giant stars. The parametric study consists in varying the amplitude of the contraction velocity and of the initial magnetic field. The other parameters were fixed with the guidance of a previous study. Results. After an unsteady phase during which the toroidal field grew linearly and then back-reacted on the flow, a quasi-steady configuration was reached, characterised by the presence of two magnetically decoupled regions. In one of them, magnetic tension imposes solid-body rotation. In the other, called the dead zone, the main force balance in the angular momentum equation does not involve the Lorentz force and a differential rotation exists. In the strongly stably stratified regime, when the initial magnetic field is quadrupolar, a magnetorotational instability is found to develop in the dead zones. The large-scale structure is eventually destroyed and the differential rotation is able to build up in the whole radiative zone. In the weakly stably stratified regime, the instability is not observed in our simulations, but we argue that it may be present in stars. Conclusions. We propose a scenario that may account for the post-main sequence evolution of solar-like stars, in which quasi-solid rotation can be maintained by a large-scale magnetic field during a contraction timescale. Then, an axisymmetric instability would destroy this large-scale structure and this enables the differential rotation to set in. Such a contraction-driven instability could also be at the origin of the observed dichotomy between strongly and weakly magnetic intermediate-mass stars.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据