4.6 Article

Searching for the origin of the Ehrenreich effect in ultra-hot Jupiters Evidence for strong C/O gradients in the atmosphere of WASP-76 b?

期刊

ASTRONOMY & ASTROPHYSICS
卷 661, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/202142591

关键词

planets and satellites: atmospheres; planets and satellites: gaseous planets; techniques: spectroscopic; planets and satellites: individual: WASP-76 b; infrared: planetary systems

资金

  1. European Research Council under the European Union's Horizon 2020 research and innovation program [694513, 832428-Origins]
  2. MINECO/FEDER [AyA2017-84089.7]

向作者/读者索取更多资源

Extreme temperature contrasts between the day and nightside of ultra-hot Jupiters result in significantly asymmetric atmospheres. This study observes the transit of WASP-76 b and finds that the composition and appearance of the planet's atmosphere change during different stages of the transit. Formal detections of water vapor and hydrogen cyanide are observed, but their positions in the KP-vsys diagram are significantly different, suggesting variations in atmospheric conditions. These observations indicate the potential for spatial characterization of different molecules and nightside condensation.
Extreme temperature contrasts between the day and nightside of ultra-hot Jupiters result in significantly asymmetric atmospheres, with a large expansion occurring over a small range of longitude around the terminator. Over the course of a transit, WASP-76 b rotates by about 30 degrees, changing the observable part of the atmosphere and invoking variations in the appearance of its constituents. Specifically, during the latter part of the transit, the planet's trailing limb probes an increasing portion of its inflated dayside, which has a higher atmospheric detectability in transmission. As recently reported, this results in time-variable effects in the neutral iron signal, which are amplified by its possible condensation on the nightside. Here, we study the presence of molecular signals during a transit of WASP-76 b observed with the CARMENES spectrograph and compare the contributions from this planet's morning and evening terminators. The results are somewhat puzzling, with formal detections of water vapor (5.5 sigma) and hydrogen cyanide (5.2 sigma) but at significantly different positions in the KP-vsys diagram, with a blueshift of -14.3 +/- 2.6 km s(-1) and a redshift of +20.8(-3.9)(+7.8) km s(-1) respectively, and a higher K-P than expected. The H2O signal also appears stronger later on in the transit, in contrast to that of HCN, which seems stronger early on. We tentatively explain this by silicate clouds forming and raining out on the nightside of the planet, partially removing oxygen from the upper atmosphere. For atmospheric C/O values between 0.7 and 1, this leads to the formation of HCN at the planet's morning limb. At the evening terminator, with the sequestered oxygen being returned to the gas phase due to evaporation, these C/O values lead to formation of H2O instead of HCN. Overall, if confirmed, these observations indicate that individual molecules trace different parts of the planet atmosphere, as well as nightside condensation, allowing spatial characterization. As these results are based on a single transit observation, we advocate that more data are needed to confirm these results and further explore these scenarios.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据