4.6 Article

Machine learning methods for constructing probabilistic Fermi-LAT catalogs

期刊

ASTRONOMY & ASTROPHYSICS
卷 660, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/202140766

关键词

methods: statistical; catalogs; gamma rays: general

资金

  1. BMBF under the ErUM-Data project Innovative Digital Technologies for Research on Universe and Matter [05H18WERC1]
  2. DFG [MA 8279/2-1]

向作者/读者索取更多资源

This article discusses the probabilistic classification of Fermi-LAT sources using machine learning methods. The authors determine the classification of pulsars, active galactic nuclei (AGNs), and other sources by comparing different meta-parameters of the machine learning methods. The results show that the three-class classification performs similarly to the two-class classification in terms of reliability and does not require adjustment for the presence of other sources.
Context. Classification of sources is one of the most important tasks in astronomy. Sources detected in one wavelength band, for example using gamma rays, may have several possible associations in other wavebands, or there may be no plausible association candidates. Aims. In this work we aim to determine the probabilistic classification of unassociated sources in the third Fermi Large Area Telescope (LAT) point source catalog (3FGL) and the fourth Fermi LAT data release 2 point source catalog (4FGL-DR2) using two classes - pulsars and active galactic nuclei (AGNs) - or three classes - pulsars, AGNs, and OTHER sources. Methods. We use several machine learning (ML) methods to determine a probabilistic classification of Fermi-LAT sources. We evaluate the dependence of results on the meta-parameters of the ML methods, such as the maximal depth of the trees in tree-based classification methods and the number of neurons in neural networks. Results. We determine a probabilistic classification of both associated and unassociated sources in the 3FGL and 4FGL-DR2 catalogs. We cross-check the accuracy by comparing the predicted classes of unassociated sources in 3FGL with their associations in 4FGL-DR2 for cases where such associations exist. We find that in the two-class case it is important to correct for the presence of OTHER sources among the unassociated ones in order to realistically estimate the number of pulsars and AGNs. We find that the three-class classification, despite different types of sources in the OTHER class, has a similar performance as the two-class classification in terms of reliability diagrams and, at the same time, it does not require adjustment due to presence of the OTHER sources among the unassociated sources. We show an example of the use of the probabilistic catalogs for population studies, which include associated and unassociated sources.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据