4.6 Article

The Maggie filament: Physical properties of a giant atomic cloud

期刊

ASTRONOMY & ASTROPHYSICS
卷 657, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/202141265

关键词

ISM: clouds; ISM: atoms; ISM: kinematics and dynamics; ISM: structure; radio lines: ISM

资金

  1. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [138713538 -SFB 881]
  2. European Research Council under the Horizon 2020 Framework Program via the ERC Consolidator Grant [CSF-648505]
  3. European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme [851435]
  4. Institute for Theory and Computations (ITC) at the HarvardSmithsonian Center for Astrophysics
  5. National Aeronautics and Space Administration [80NM0018D0004]
  6. Heidelberg Cluster of Excellence STRUCTURES of Germany's Excellence Strategy [EXC-2181/1 -390900948]
  7. European Research Council via the ERC Synergy Grant ECOGAL [855130]
  8. STFC ERF [ST/N00485X/1]

向作者/读者索取更多资源

This study investigates the physical properties of the Maggie filament, a large-scale atomic filament, and suggests that it could be a precursor to giant molecular filaments. The study also reveals the position and kinematic characteristics of Maggie within the Milky Way.
Context. The atomic phase of the interstellar medium plays a key role in the formation process of molecular clouds. Due to the line-of-sight confusion in the Galactic plane that is associated with its ubiquity, atomic hydrogen emission has been challenging to study. Aims. We investigate the physical properties of the Maggie filament, a large-scale filament identified in H I emission at line-of-sight velocities, upsilon(LSR) similar to -54 km s(-1). Methods. Employing the high-angular resolution data from The H I/OH Recombination line survey of the inner Milky Way (THOR), we have been able to study H I emission features at negative upsilon(LSR) velocities without any line-of-sight confusion due to the kinematic distance ambiguity in the first Galactic quadrant. In order to investigate the kinematic structure, we decomposed the emission spectra using the automated Gaussian fitting algorithm GAUSSPY+. Results. We identify one of the largest, coherent, mostly atomic H I filaments in the Milky Way. The giant atomic filament Maggie, with a total length of 1.2 +/- 0.1 kpc, is not detected in most other tracers, and it does not show signs of active star formation. At a kinematic distance of 17 kpc, Maggie is situated below (by approximate to 500 pc), but parallel to, the Galactic H I disk and is trailing the predicted location of the Outer Arm by 5-10 km s(-1) in longitude-velocity space. The centroid velocity exhibits a smooth gradient of less than +/- 3 km s(-1) (10 pc)(-1) and a coherent structure to within +/- 6 km s(-1). The line widths of similar to 10 km s(-1) along the spine of the filament are dominated by nonthermal effects. After correcting for optical depth effects, the mass of Maggie's dense spine is estimated to be 7.2(-1.9)(+2.5) x 10(5) M-circle dot. The mean number density of the filament is similar to 4 cm(-3), which is best explained by the filament being a mix of cold and warm neutral gas. In contrast to molecular filaments, the turbulent Mach number and velocity structure function suggest that Maggie is driven by transonic to moderately supersonic velocities that are likely associated with the Galactic potential rather than being subject to the effects of self-gravity or stellar feedback. The probability density function of the column density displays a log-normal shape around a mean of < N-HI > = 4.8 x 10(20) cm(-2), thus reflecting the absence of dominating effects of gravitational contraction. Conclusions. While Maggie's origin remains unclear, we hypothesize that Maggie could be the first in a class of atomic clouds that are the precursors of giant molecular filaments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据