4.6 Article

The New Generation Planetary Population Synthesis (NGPPS) II. Planetary population of solar-like stars and overview of statistical results

期刊

ASTRONOMY & ASTROPHYSICS
卷 656, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/202038863

关键词

planets and satellites: formation; planet-disk interactions; protoplanetary disks; methods: numerical

资金

  1. University of Arizona
  2. Swiss National Science Foundation [BSSGI0_155816]
  3. SNSF [200020_172746]

向作者/读者索取更多资源

The study aims to understand the impacts of different physical processes and initial conditions on the demographics of planetary population. Results show that properties of giant planets remain stable with at least ten embryos in each system, while only populations with 100 embryos are able to reach the giant-impact stage for inner terrestrial planets.
Context. Planetary formation and evolution is a combination of multiple interlinked processes. Constraining the mechanisms observationally requires statistical comparison to a large diversity of planetary systems. Aims. We want to understand global observable consequences of different physical processes (accretion, migration, and interactions) and initial properties (like disc masses and metallicities) on the demographics of the planetary population. We also want to study the convergence of our scheme with respect to one initial condition, the initial number of planetary embryo in each disc. Methods. We selected distributions of initial conditions that are representative of known protoplanetary discs. Then, we used the Generation III Bern model to perform planetary population synthesis. We synthesise five populations with each a different initial number of Moon-mass embryos per disc: 1, 10, 20, 50, and 100. The last is our nominal population consisting of 1000 stars (systems) that was used for an extensive statistical analysis of planetary systems around 1 M-circle dot stars. Results. The properties of giant planets do not change much as long as there are at least ten embryos in each system. The study of giants can thus be done with simulations requiring less computational resources. For inner terrestrial planets, only the 100-embryos population is able to attain the giant-impact stage. In that population, each planetary system contains, on average, eight planets more massive than 1 M-circle plus . The fraction of systems with giants planets at all orbital distances is 18%, but only 1.6% are at >10 au. Systems with giants contain on average 1.6 such planets. The planetary mass function varies as M-2 between 5 and 50 M-circle plus. Both at lower and higher masses, it follows approximately M-1. The frequency of terrestrial and super-Earth planets peaks at a stellar [Fe/H] of -0.2 and 0.0, respectively, being limited at lower [Fe/H] by a lack of building blocks, and by (for them) detrimental growth of more massive dynamically active planets at higher [Fe/H]. The frequency of more massive planets (Neptunian, giants) increases monotonically with [Fe/H]. The fast migration of planets in the 5-50 M-circle plus range is reduced by the presence of multiple lower-mass inner planets in the multi-embryos populations. To assess the impact of parameters and model assumptions, we also study two non-nominal populations: insitu formation without gas-driven migration, and a different initial planetesimal surface density. Conclusions. We present one of the most comprehensive simulations of (exo)planetary system formation and evolution to date. For observations, the syntheses provides a large data set to search for comparison synthetic planetary systems that show how these systems have come into existence. The systems, including their full formation and evolution tracks are available online. For theory, they provide the framework to observationally test the global statistical consequences of theoretical models for specific physical processes. This is an important ingredient towards the development of a standard model of planetary formation and evolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据