4.5 Article

Associations of body composition with regional brain volumes and white matter microstructure in very preterm infants

出版社

BMJ PUBLISHING GROUP
DOI: 10.1136/archdischild-2021-321653

关键词

neonatology; growth

资金

  1. Marshall Klaus Perinatal Research Award from the American Academy of Pediatrics
  2. Gerber Foundation
  3. Brigham Research Institute
  4. Brigham and Women's Hospital Stork Fund
  5. National Institute of Biomedical Imaging and Bioengineering [R01 EB019483]
  6. National Center for Research Resources [UL1RR025758]

向作者/读者索取更多资源

This study found that lean mass was associated with larger brain volume and differences in white matter microstructure among very preterm infants at term equivalent age, suggesting that lean mass growth may index brain growth and development.
This prospective observational study looks at the associations between body composition and brain development among very preterm infants at term equivalent age. Objective To determine associations between body composition and concurrent measures of brain development including (1) Tissue-specific brain volumes and (2) White matter microstructure, among very preterm infants at term equivalent age. Design Prospective observational study. Setting Single-centre academic level III neonatal intensive care unit. Patients We studied 85 infants born Methods At term equivalent age, infants underwent air displacement plethysmography to determine body composition, and brain MRI from which we quantified tissue-specific brain volumes and fractional anisotropy (FA) of white matter tracts. We estimated associations of fat and lean mass Z-scores with each brain outcome, using linear mixed models adjusted for intrafamilial correlation among twins and potential confounding variables. Results Median gestational age was 29 weeks (range 23.4-32.9). One unit greater lean mass Z-score was associated with larger total brain volume (10.5 cc, 95% CI 3.8 to 17.2); larger volumes of the cerebellum (1.2 cc, 95% CI 0.5 to 1.9) and white matter (4.5 cc, 95% CI 0.7 to 8.3); and greater FA in the left cingulum (0.3%, 95% CI 0.1% to 0.6%), right uncinate fasciculus (0.2%, 95% CI 0.0% to 0.5%), and right posterior limb of the internal capsule (0.3%, 95% CI 0.03% to 0.6%). Fat Z-scores were not associated with any outcome. Conclusions Lean mass-but not fat-at term was associated with larger brain volume and white matter microstructure differences that suggest improved maturation. Lean mass accrual may index brain growth and development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据