4.6 Article

NPAS4 suppresses propofol-induced neurotoxicity by inhibiting autophagy in hippocampal neuronal cells

期刊

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.abb.2021.109018

关键词

NPAS4; Propofol; Neurotoxicity; Autophagy; Hippocampal neuron

向作者/读者索取更多资源

The study aimed to investigate the neuroprotective effect of NPAS4 against propofol-induced neurotoxicity in hippocampal neuronal cells. The results demonstrated that overexpression of NPAS4 protected HT22 cells against propofol-induced damage by reducing autophagy.
Propofol, a general intravenous anesthetic, has been demonstrated to cause a profound neuroapoptosis in the developing brain followed by long-term neurocognitive impairment. Our study aimed to examine the neuroprotective effect of neuronal PAS domain protein 4 (NPAS4), an activity-dependent neuron-specific transcription factor, on propofol-induced neurotoxicity in hippocampal neuronal HT22 cells. The differentially expressed genes in HT22 cells after treatment with propofol were screened from Gene Expression Omnibus dataset GSE106799. NPAS4 expression in HT22 cells treated with different doses of propofol was investigated by qRT-PCR and Western blot analysis. Cell viability, lactate dehydrogenase (LDH) release, caspase-3 activity, and apoptosis were evaluated by MTT, a LDH-Cytotoxicity Assay Kit, a Caspase-3 Colorimetric Assay Kit, and TUNEL assay, respectively. The protein levels of LC3-I, LC3-II, Beclin 1, p62 and NPAS4 were detected using Western blot analysis. Propofol treatment concentration-dependently decreased NPAS4 expression in HT22 cells. Propofol treatment inhibited cell viability, increased LDH release and caspase-3 activity, and induced apoptosis and autophagy in HT22 cells. NPAS4 overexpression suppressed propofol-induced cell injury and autophagy in HT22 cells. Mechanistically, autophagy agonist rapamycin attenuated the neuroprotective effect of NPAS4 in propofol-treated HT22 cells. In conclusion, NAPS4 overexpression protected hippocampal neuronal HT22 cells against propofol-induced neurotoxicity by reducing autophagy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据