4.7 Article

Probabilistic modeling and reliability-based design optimization of a ground source heat pump system

期刊

APPLIED THERMAL ENGINEERING
卷 197, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2021.117341

关键词

Ground source heat pump; Reliability-based design optimization; Probabilistic uncertainty; First-order reliability method

资金

  1. National Institute of Food and Agriculture, United States [ILLU-741-359]
  2. Student Sustainability Committee at the University of Illinois at Urbana-Champaign

向作者/读者索取更多资源

The study analyzed the impact of probabilistic uncertainties in design variables of a ground source heat pump system using reliability-based design optimization method, determining optimal design solutions to improve performance and economic competitiveness.
The optimization design of a ground source heat pump (GSHP) system can be crucial in improving its performance and economic competitiveness. The effect of probabilistic uncertainties of design variables in a GSHP system was analyzed using reliability-based design optimization (RBDO) method. An analytical borehole heat transfer model was selected as the frame of energy simulation in this work. With the goal to minimize the cumulative costs over a 20-year lifespan of the GSHP system, a non-linear optimization was carried out under three constraint factors imposed on the internal flow in ground heat exchanger: The inlet water temperature, water pressure losses and Reynolds number to ensure turbulent flow. Three design variables including depth of boreholes, ground pipe radius and mass flow rate, and two random variables at the installation site, including the groundwater velocity and ground thermal conductivity were considered in this investigation. Different uncertainty levels were assigned into the probability indexes of all five variables, which were studied under multiple reliability levels of all three constraints. Results showed that uncertainties of variables can strongly affect the system reliability and total cost determination. The compromised increment of system cost to ensure the reliability was discussed, and the optimal combinations of design variables (borehole depth, pipe radius and mass flow rate) were also given under different designing scenarios.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据