4.7 Article

Effects of port mixing and high carbon dioxide contents on power generation and emission characteristics of biogas-diesel RCCI combustion

期刊

APPLIED THERMAL ENGINEERING
卷 198, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2021.117449

关键词

RCCI combustion; Power generation; Exergy destruction; Mixture homogeneity; Port mixing distance

资金

  1. Yayasan Universiti Teknologi PETRO-NAS (YUTP) Grant [015LC0-077]

向作者/读者索取更多资源

Reactivity-controlled compression ignition (RCCI) combustion burns fuels of varying reaction rates to enhance combustion stratification. This study investigates the effects of different carbon dioxide (CO2) contents and port mixing distances on biogas-diesel RCCI combustion. Injecting biogas at the valve can increase combustion work but reduce power output.
Reactivity-controlled compression ignition (RCCI) combustion burns fuels of varying reaction rates to enhance combustion stratification. Biogas-diesel RCCI combustion requires energy assessment to improve power and reduce emissions. This study investigates the effects of different carbon dioxide (CO2) contents (25, 35, and 45%) and port mixing distances (0, 28.75, 57.5, 86.25, and 115 mm) experimentally, at 6.5 bar IMEP and 1600 rpm in a premixed and port injection at the valve. An exergy analysis facilitates understanding high-CO2 biogas stratification and the cause of emissions trade-off experimentally, unavailable in the literature. Based on energy analysis, a 35% CO2 content demonstrates moderate combustion work and enhanced output power, while 45% CO2 shows lower heat loss across the mixing distances. Injecting biogas at the valve increases combustion work by 9.11 - 27.33% and reduces power output by 0.33 - 4.90% due to increased exhaust loss. Based on exergy analysis, evenly distributed in-cylinder temperatures and sufficient fuel stratification were observed for 35% CO2 and 50% distance. The 35% CO2 increases the internal energy potential recovery by 24.26% over mixing spaces because of reduced destruction. Injection at the valve causes stratified CO2 layers at the bowl centerline and diffused temperature at the cylinder wall, simultaneously decreasing CO2, carbon monoxide, unburned hydrocarbon, nitrogen oxides, and particulate matter emissions by 4.46, 2.04, 3.05, 44.67, and 9.13%, respectively. Therefore, increased compression work allows more heat transfer through the exhaust, while heat outflow through the cylinder wall reduces combustion work. Furthermore, the reduced emissions due to increased CO2 content at higher mixing distances compromised the output power of the biogas-diesel RCCI engine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据