4.7 Article

Thermodynamic analysis of a novel ejector-enhanced auto-cascade refrigeration cycle

期刊

APPLIED THERMAL ENGINEERING
卷 200, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2021.117636

关键词

Auto-cascade refrigeration; Ejector; Zeotropic mixture; Performance improvement

资金

  1. National Natural Science Foundation of China (NSFC) [51776147]
  2. NSFC

向作者/读者索取更多资源

This paper introduces a novel ejector-enhanced auto-cascade refrigeration cycle (NEARC) and compares its performance with conventional auto-cascade refrigeration cycle (CARC) and ejector-enhanced auto-cascade refrigeration cycle (EARC) using energy and exergy analysis methods. NEARC shows superior COP and exergy efficiency compared to CARC under various working conditions, with the best performance observed when the initial mass fraction of R290 is around 0.7.
This paper proposes a novel ejector-enhanced auto-cascade refrigeration cycle (NEARC). In the novel cycle, the ejector not only replaces an expansion valve to recover partial expansion work, but also greatly reduces the throttling loss of the other expansion valve connected to the evaporator. The energy and exergy analysis methods are used to evaluate and compare the performance of NEARC using R290/R170 with conventional auto-cascade refrigeration cycle (CARC) and previously proposed ejector-enhanced auto-cascade refrigeration cycle (EARC). The simulation results show that under all given working conditions, the COP and exergy efficiency of NEARC are superior to those of CARC, but not always superior to those of EARC. With the change of initial mass fraction of R290, the COP and exergy efficiency of the three cycles all have maximum values. The maximum COP and exergy efficiency of NEARC are 42.85% and 42.71% higher than those of CARC, and 18.10% and 17.99% higher than those of EARC, respectively. When initial mass fraction of R290 is about 0.5, CARC and EARC have the best performance, and NEARC performs best when initial mass fraction of R290 is about 0.7. The comparison results demonstrate that the novel cycle has great energy-saving potential.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据