4.7 Article

Periodical amphiphilic surface with chemical patterning for micelles immobilization and analysis

期刊

APPLIED SURFACE SCIENCE
卷 586, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2022.152833

关键词

Diazonium chemistry; Surface chemical pattering; Colloid lithography; Amphiphilic surface; Micelles immobilization

资金

  1. GACR [19-24603Y]

向作者/读者索取更多资源

We developed a strategy to produce periodic patterned surfaces with controlled hydrophilic and hydrophobic nanoareas. The approach involves colloid lithography and electrochemical surface grafting, and the resulting surfaces show different affinities towards proteins and micelles, making them suitable for drug delivery and qualitative analysis.
We present a strategy to produce periodically patterned surface with the controlled hydrophilic and hydrophobic nanoareas. The developed approach comprises colloid lithography using vapor-annealed polystyrene (PS) microspheres mask and two-step electrochemical surface grafting. The grafting was performed using the diazonium surface chemistry before and after colloid mask removal in order to introduce hydrophilic Ph-COOH and hydrophobic Ph-C8F17 moieties. Grafted chemical moities were covalently attached to the surface. The procedure results in creation of a surface with nanoprecisely located periodical hydrophobic and hydrophilic areas, with different sizes and geometry, determined by vapor annealing of PS microspheres. The created amphiphilic surface shows good biorepelency towards bovine serum albumin (BSA) and a high affinity towards amphiphilic micelles. Variation of surface nanoarchitecture elucidates the optimal surface chemistry for immobilization and surface entrapping of drug-loaded micelles. The formation of additional interface between amphilic surface and micelles was proved by dramatic decrease of the contact angle. According to Fourier-transform infrared spectroscopy (FTIR) results, created amphiphilic surfaces can capture drug-loaded micelles even in the presence of BSA biomatrix. Described procedure represents a versatile and scalable method for the creation of stable amphiphilic coating and its potential application in qualitative analysis and identification of micelles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据