4.7 Article

Reactivity passivation of red phosphorus with thin plasma-deposited carbon coating

期刊

APPLIED SURFACE SCIENCE
卷 587, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2022.152791

关键词

Phosphorus; Surface reaction; X-ray photoelectron spectroscopy; Infrared spectroscopy; Infrared head-space analysis; Phosphine

资金

  1. National Science Foundation [CHE-2001611, DMR-1720415]
  2. U.S. Army [W911SR19C0015]

向作者/读者索取更多资源

A method using plasma-deposited carbon to suppress phosphine and acidic phosphorus production on red phosphorus particles has been developed. The study found that increasing deposition time can result in thicker and more uniform carbon coatings, leading to a significant decrease in phosphine generation and surface phosphorus oxide formation.
Red phosphorus, when exposed to humid environments in air, breaks down into toxic phosphine gas and acidic phosphorus species, presenting a challenge for many applications, such as flame retardants or pyrotechnic obscurants. We have developed and characterized a method of plasma-deposited carbon to form a nanometer-thick, chemically stable carbon layer on red phosphorus particles to suppress phosphine and acidic phosphorus production. Using a combination of XPS surface analysis and a novel IR headspace analysis method, we developed and quantified an understanding of the reaction of red phosphorus with water vapor and the suppression of decomposition products using plasma-deposited carbon coatings. Phosphine production, quantified by IR, was accompanied by the formation of surface POx species produced as the particles react with water vapor. Increasing plasma deposition time increased thickness and uniformity of graphitic carbon coating, corresponding to a marked decrease in phosphine generation and formation of surface POx species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据