4.7 Article

Comparing seven methods for state-of-health time series prediction for the lithium-ion battery packs of forklifts

期刊

APPLIED SOFT COMPUTING
卷 111, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.asoc.2021.107670

关键词

Electrical vehicles; State-of-health for lithium-ion batteries; Machine learning; Neural networks; Timeseries prediction

资金

  1. European Commission through the H2020 project FINEST TWINS [856602]
  2. Academy of Finland [296096, 322742]
  3. European Commission through EUREKA Eurostars 2 [E! 12005 AIES]
  4. Business Finland
  5. Academy of Finland (AKA) [322742, 296096, 322742] Funding Source: Academy of Finland (AKA)

向作者/读者索取更多资源

This paper explores the application of gradient boosting regression in predicting battery SoH, comparing it with various other methods. The final model shows good performance in predicting battery health and is also adaptable to metrics such as cycle counts.
A key aspect for the forklifts is the state-of-health (SoH) assessment to ensure the safety and the reliability of uninterrupted power source. Forecasting the battery SoH well is imperative to enable preventive maintenance and hence to reduce the costs. This paper demonstrates the capabilities of gradient boosting regression for predicting the SoH timeseries under circumstances when there is little prior information available about the batteries. We compared the gradient boosting method with light gradient boosting, extra trees, extreme gradient boosting, random forests, long short-term memory networks and with combined convolutional neural network and long short-term memory networks methods. We used multiple predictors and lagged target signal decomposition results as additional predictors and compared the yielded prediction results with different sets of predictors for each method. For this work, we are in possession of a unique data set of 45 lithium-ion battery packs with large variation in the data. The best model that we derived was validated by a novel walk-forward algorithm that also calculates point-wise confidence intervals for the predictions; we yielded reasonable predictions and confidence intervals for the predictions. Furthermore, we verified this model against five other lithium-ion battery packs; the best model generalised to greater extent to this set of battery packs. The results about the final model suggest that we were able to enhance the results in respect to previously developed models. Moreover, we further validated the model for extracting cycle counts presented in our previous work with data from new forklifts; their battery packs completed around 3000 cycles in a 10-year service period, which corresponds to the cycle life for commercial Nickel-Cobalt-Manganese (NMC) cells. (C) 2021 The Author(s). Published by Elsevier B. V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据