4.7 Review

Artificial neural networks in drought prediction in the 21st century-A scientometric analysis

期刊

APPLIED SOFT COMPUTING
卷 114, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.asoc.2021.108080

关键词

Drought prediction; Neural networks; Scientometric analysis; Deep learning; Interpretable models

资金

  1. Centre for Advanced Modelling & Geospatial Information Systems (CAMGIS), Faculty of Engineering and IT, UTS
  2. IRTP scholarship - Department of Education and Training, Govt. of Australia

向作者/读者索取更多资源

This study focuses on developing reliable drought forecasting models, with artificial neural networks being highlighted as one of the most powerful techniques due to their ability to capture dynamic relationships among nonlinear and multivariate factors.
Droughts are the most spatially complex geohazard, which often lasts for years, thereby severely impacting socio-economic sectors. One of the critical aspects of drought studies is developing a reliable and robust forecasting model, which could immensely help drought management planners in adopting adequate measures. Further, the prediction of drought events are extremely challenging due to the involvement of several hydro-meteorological factors, which are further aggravated by the effect of climate change. Among the several techniques such as statistical, physical and data-driven that are used to forecast droughts, artificial neural networks provide one of the most robust approach. As droughts are inherently non-linear and multivariate in nature, the capability of neural networks to capture the dynamic relationship easily and efficiently has seen a rise in its use. Here we evaluate the most used architectures in the last two decades, using scientometric analysis. A general framework used in drought prediction studies is explained and examples from various continents are provided, thus exploring the topic in a global context. The findings show that using sophisticated input representation, the artificial intelligence-based solutions applied to drought prediction of hydro-meteorological variables have promising success, particularly in complex geographical scenarios. The future works need to focus on interpretable models, use of deep learning architectures for long lead time forecasting and use of neural networks to predict different drought characteristics like drought propagation and flash droughts. We also summarize the most widely used neural network approaches in spatial drought prediction, which would serve as a foundation for future research in drought prediction studies. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据