4.7 Article

Adaptive neighborhood size and effective geometric features selection for 3D scattered point cloud classification

期刊

APPLIED SOFT COMPUTING
卷 115, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.asoc.2021.108196

关键词

Point cloud classification; Neighborhood size selection; Geometric feature vector; Auto-Encoder

向作者/读者索取更多资源

The paper proposes an Omnivariance based adaptive neighborhood size selection method and a new feature set composed of 14 features for extraction of geometric features. The results demonstrate that combining the proposed optimum neighbor selection method and feature set with the Auto-Encoder classifier can achieve good classification performance on various datasets.
Classification of 3D scatter and unorganized point cloud (PC) is an ongoing hard problem due to high redundancy, unbalanced sampling density, and large data structure of PC. Geometric and spectral features derived from the PC are generally used for classification. In this paper, an Omnivariance based adaptive neighborhood size selection method and a new feature set composed of 14 features are proposed for extraction of geometric features for each individual point within the local neighborhood. Performance of 8 modern classifiers with different strategies (i.e., boosting, ensemble, and deep learning etc.) were evaluated on the Oakland, Vaihingen, and ISPRS datasets. These 3 datasets are identified by 5, 9, and 2 distinct object classes, respectively. The results were compared with different neighborhood size selection methods (i.e., eigenentropy based, fixed number of the k-nearest neighbors) and feature set (i.e., 21 features). Only 3D local features were employed to classify datasets with varying characteristics and properties. The proposed optimum neighbor selection method and feature set provided the best statistical results with Auto-Encoder classifier (the overall accuracies are over 85%, 60% and, 90% the Oakland, Vaihingen, and ISPRS datasets, respectively). Especially for the ISPRS dataset, the Auto-Encoder obtained over 94%, 90%, and 93% precision, recall, and f-score, respectively. (C) 2021 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据