4.6 Article

Enhancing hole injection by electric dipoles for efficient blue InP QLEDs

期刊

APPLIED PHYSICS LETTERS
卷 119, 期 22, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0071508

关键词

-

资金

  1. National Key Research and Development Program [2017YFE0120400, 2019YFB1704600]
  2. National Natural Science Foundation of China [61875082, 61905107]
  3. Key-Area Research and Development Program of Guangdong Province [2019B010924001]
  4. Innovation Project of Department of Education of Guangdong Province [2019KTSCX157]
  5. Shenzhen Innovation Project [JCYJ20190809152411655]

向作者/读者索取更多资源

This study introduced an ultrathin MoO3 electric dipole layer to balance carrier injection, resulting in an enhanced maximal external quantum efficiency of blue InP QLEDs, providing a method to achieve high-efficiency QLEDs.
The unbalanced carrier injection is a key factor that deteriorates the performance of blue InP quantum dot light-emitting diodes (QLEDs). Therefore, to achieve efficient blue InP QLEDs, an effective strategy that balances carrier injection through enhancing the hole injection and transport is in demand. In this study, we introduced an ultrathin MoO3 electric dipole layer between the hole injection layer and the hole transport layer (HTL) to form a pair of dipole-induced built-in electric fields with forward resultant direction to enhance hole injection and facilitate the balance of carrier injection. Meanwhile, the p-doping effect by MoO3 leads to increased carrier concentration and decreased trap density of interfacial HTL, therefore improved its effective hole mobility. Consequently, the maximal external quantum efficiency of blue InP QLEDs was enhanced from 1.0% to 2.1%. This work provides an effective method to balance carrier injection by modulating hole injection and transport, indicating the feasibility to realize high-efficiency QLEDs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据