4.6 Article

Reduced order multirate schemes for coupled differential-algebraic systems

期刊

APPLIED NUMERICAL MATHEMATICS
卷 168, 期 -, 页码 104-114

出版社

ELSEVIER
DOI: 10.1016/j.apnum.2021.05.023

关键词

Multirate; Model order reduction; Differential-algebraic equations; Snapshot sampling

资金

  1. European Union's Horizon 2020 research and innovation programme under the Marie SkodowskaCurie Grant [765374]

向作者/读者索取更多资源

This paper presents a twofold approach to reduce the simulation costs of integrated circuits, by combining maximum entropy snapshot sampling method and nonlinear model order reduction technique with multirate time integration. Numerical verification confirms the convergence of this combined method, showing a reduction in computational effort without significant loss of accuracy.
In the context of time-domain simulation of integrated circuits, one often encounters large systems of coupled differential-algebraic equations. Simulation costs of these systems can become prohibitively large as the number of components keeps increasing. In an effort to reduce these simulation costs a twofold approach is presented in this paper. We combine maximum entropy snapshot sampling method and a nonlinear model order reduction technique, with multirate time integration. The obtained model order reduction basis is applied using the GauB-Newton method with approximated tensors reduction. This reduction framework is then integrated using a coupled-slowest-first multirate integration scheme. The convergence of this combined method is verified numerically. Lastly it is shown that the new method results in a reduction of the computational effort without significant loss of accuracy. (C) 2021 IMACS. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据