4.8 Article

Resilience-oriented schedule of microgrids with hybrid energy storage system using model predictive control

期刊

APPLIED ENERGY
卷 306, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2021.118092

关键词

Energy management; Multi-scenario; MPC; Resilience; Microgrid; Hybrid energy storage system

资金

  1. European Regional Development Fund (ERDF) under the Interreg SUDOE [SOE3/P3/E0901]

向作者/读者索取更多资源

This study focuses on the development of a resilience-oriented optimization for microgrids with hybrid Energy Storage System (ESS), validated through numerical simulations. The research aims to improve the autonomy of the microgrid and achieve a rapid transition response.
Microgrids can be regarded as a promising solution by which to increase the resilience of power systems in an energy paradigm based on renewable generation. Their main advantage is their ability to work as islanded systems under power grid outage conditions. Microgrids are usually integrated into electrical markets whose schedules are carried out according to economic aspects, while resilience criteria are ignored. This paper shows the development of a resilience-oriented optimization for microgrids with hybrid Energy Storage System (ESS), which is validated via numerical simulations. A hybrid ESS composed of hydrogen and batteries is, therefore, considered with the objective of improving the autonomy of the microgrid while achieving a rapid transition response. The control problem is formulated using Stochastic Model Predictive Control (SMPC) techniques in order to take into account possible transitions between grid-connected and islanded modes at all the sample instants of the schedule horizon (SH). The control problem is developed by considering a healthy operation of the hybrid ESS, thus avoiding degradation issues. The plant is modeled using the Mixed Logic Dynamic (MLD) framework, owing to the presence of logic and dynamic control variables.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据