4.8 Review

A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery

期刊

APPLIED ENERGY
卷 300, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2021.117346

关键词

Lithium-ion battery; Machine learning; Deep learning; State of health; Health monitoring; Battery management system

资金

  1. EUDP Denmark under the CloudBMS: The New Generation of Intelligent Battery Management Systems project [6401705167]

向作者/读者索取更多资源

This paper systematically reviews the five most studied types of machine learning algorithms for battery state of health estimation, comparing their advantages and applicability. Support vector machine and artificial neural network algorithms are still research hotspots, while deep learning shows great potential in estimating battery SOH under complex aging conditions with big data. Ensemble learning provides an emerging alternative in balancing data size and accuracy.
Lithium-ion batteries are used in a wide range of applications including energy storage systems, electric transportations, and portable electronic devices. Accurately obtaining the batteries' state of health (SOH) is critical to prolong the service life of the battery and ensure the safe and reliable operation of the system. Machine learning (ML) technology has attracted increasing attention due to its competitiveness in studying the behavior of complex nonlinear systems. With the development of big data and cloud computing, ML technology has a big potential in battery SOH estimation. In this paper, the five most studied types of ML algorithms for battery SOH estimation are systematically reviewed. The basic principle of each algorithm is rigorously derived followed by flow charts with a unified form, and the advantages and applicability of different methods are compared from a theoretical perspective. Then, the ML-based SOH estimation methods are comprehensively compared from following three aspects: the estimation performance of various algorithms under five performance metrics, the publication trend obtained by counting the publications in the past ten years, and the training modes considering the feature extraction and selection methods. According to the comparison results, it can be concluded that amongst these methods, support vector machine and artificial neural network algorithms are still research hotspots. Deep learning has great potential in estimating battery SOH under complex aging conditions especially when big data is available. Moreover, the ensemble learning method provides an emerging alternative trading-off between data size and accuracy. Finally, the outlooks of the research on future ML-based battery SOH estimation methods are closed, hoping to provide some inspiration when applying ML methods to battery SOH estimation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据