4.8 Article

Yoyo-ball inspired triboelectric nanogenerators for harvesting biomechanical energy

期刊

APPLIED ENERGY
卷 308, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2021.118322

关键词

Biomechanical energy harvesting; Yoyo ball; Triboelectric nanogenerators; Freestanding mode; Interdigitated electrodes; Portable energy sources

资金

  1. National Science Foundation of China [11872222]
  2. State Key Laboratory of Tribology, China [SKLT2021D11]

向作者/读者索取更多资源

The YB-TENG, inspired by the yo-yo ball, is designed to collect biomechanical energy. By optimizing the structure and materials, it effectively converts rotational energy into electrical power. This portable energy source has the potential to power LED lamps and micro-power devices.
The yoyo ball is a type of entertainment and fitness toy, that is popular worldwide. Herein, we propose a yoyo-ball-inspired triboelectric nanogenerator (YB-TENG) for biomechanical energy harvesting. The yoyo ball is designed as a rotor, and a string is wound on its inner diameter to form a novel two-in-one mechanism, which converts the periodic hand lifting energy into high-frequency rotation energy of the rotor. Two coaxial stators are installed on both sides of the rotor, and the friction layer and interdigital electrodes are pasted on the sides of the rotor and stator, respectively, to realize a free-standing mode TENG. Based on the fabricated YB-TENG prototype and dynamic model, the relationship between the output voltage waveform, frequency, and rotor speed is examined using time frequency analysis and numerical simulation. After the optimal load resistance is obtained, the effects of the friction layer material and structural parameters (including the number of electrode section pairs, gap length between the rotor and stator, and string length) on the YB-TENG output power are analyzed. By charging the load capacitors and effectively powering a series of LED lamps and micro-power devices, the YB-TENG exhibits potential as a portable energy source.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据