4.8 Article

A comparative techno-economic analysis of renewable methanol synthesis from biomass and CO2: Opportunities and barriers to commercialization

期刊

APPLIED ENERGY
卷 303, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2021.117637

关键词

Methanol; Techno-economic analysis; Renewable carbon; Waste carbon conversion; Energy efficiency; Carbon efficiency

资金

  1. U.S. Department of Energy (DOE) [DE-AC36-08GO28308]
  2. U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office

向作者/读者索取更多资源

Global demand for methanol is increasing, with renewable production pathways offering environmental benefits over traditional methods. However, comparing technologies at different maturity levels is challenging, necessitating a consistent techno-economic approach. Biomass gasification to methanol is identified as a near-term viable pathway with high technology readiness and competitive market pricing.
Global demand for methanol as both a chemical precursor and a fuel additive is rising. At the same time, numerous renewable methanol production pathways are under development, which, if commercialized, could provide significant environmental benefits over traditional methanol synthesis pathways. However, it is difficult to compare technologies at different maturity levels, with differing feedstocks, and with significant differences in overall process design. Thus, there is a need to harmonize the analyses of renewable pathways using a consistent techno-economic approach to evaluate the potential for commercialization of various pathways. This analysis uses a novel cross-comparison method to assess near-term and long-term viability of both low- and high-maturity level technologies. The techno-economic assessment considers cost factors critical to market acceptance combined with carbon- and energy-efficiency assessments of three renewable pathways compared with a commercial baseline. We find that biomass gasification to methanol represents a near-term viable pathway with a high technology readiness level and commercially competitive market price. If cost-reducing technological improvements can be realized and scaled up in the CO2 electrolysis pathways, the potential for higher carbon efficiencies may help drive market adoption of these more modular, direct conversion pathways in future markets as they present an opportunity to better support global decarbonization efforts through efficient waste carbon utilization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据