4.8 Article

One-step synthesis of single palladium atoms in WO2.72 with high efficiency in chemoselective hydrodeoxygenation of vanillin

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 298, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2021.120535

关键词

Palladium single atom catalyst; Coordination environments; Heterogeneous catalysis; Hydrodeoxygenation; Catalytic activity

资金

  1. China Postdoctoral Science Foundation [2019M661247, 2020T130091]
  2. Postdoctoral Sci-ence Foundation of Heilongjiang Province [LBH-Z19047]
  3. Program for Overseas Talents Introduction of Northeast Petroleum University [15041260303]
  4. Scientific Research Foundation for Returned Scholars of Heilongjiang Province of China [719900091]

向作者/读者索取更多资源

This study presents a one-step synthetic approach to fabricate a catalyst with atomically dispersed palladium atoms bonded covalently to nearby oxygen atoms, which shows outstanding catalytic performance and stability in the hydrodeoxygenation of vanillin. This high activity is attributed to the unique electronic structure of isolated palladium atoms confined in defective WO2.72, paving the way for the advancement of single atom catalysis through a coordination-engineered strategy.
The pathway for efficient catalytic hydrodeoxygenation of biomass represents a powerful, yet challenging route for production of value-added liquid fuels. Herein, we describe a one-step synthetic approach to fabricate WO2.72 decorated with atomically dispersed palladium atoms that bond covalently to the nearby oxygen atoms. The presence of isolated palladium atoms is confirmed by spherical aberration correction electron microscopy, extended X-ray absorption fine structure measurement, and diffuse reflectance infrared Fourier transform spectroscopy. This catalyst manifests outstanding catalytic performance in hydrodeoxygenation of vanillin to yield 2-methoxy-4-methylphenol (MMP) efficiently and selectively, along with exceptional stability and scalability. Density functional theory (DFT) calculations indicate that this high activity results from the unique electronic structure of isolated palladium atoms confined in defective WO2.72. These findings may pave the way for the facile creation of single atom catalysts in a coordination-engineered strategy for the advance of single atom catalysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据