4.8 Article

Anchoring strategy for highly active copper nanoclusters in hydrogenation of renewable biomass-derived compounds

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 299, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2021.120651

关键词

Biomass transformation; Hydrogenation reaction; Cu nanocluster catalysts; Nanoconfined catalysis; Graphitic carbon nitride

资金

  1. National Natural Science Foundation of China(NSFC) [21978137, 21878162]
  2. Natural Science Foundation of Tianjin [20JCZDJC00770]
  3. NCC Fund [NCC2020FH05]
  4. Fundamental Research Funds for the Central Universities
  5. Nankai University

向作者/读者索取更多资源

This study presents an efficient strategy for anchoring highly active copper nanocluster catalysts on graphitic carbon nitride and dispersing in mesoporous silica, resulting in high conversion of levulinic acid to γ-valerolactone with excellent stability. The research provides a simple anchoring strategy for constructing highly active and inexpensive copper nanocluster catalysts, which exhibit comparable performance to Ru/AC catalysts but more economically favorable.
The hydrogenation of levulinic acid (LA) to.-valerolactone (GVL) is a common reaction that is critical to biomass transformation. However, it is a great challenge to employ non-noble metal catalysts in realizing highly effective conversion from LA to GVL. Herein, we report an efficient strategy for anchoring highly active copper nanocluster catalysts on the defect sites of graphitic carbon nitride (g-C3N4) and dispersing in mesoporous silica (SBA15). The combination of g-C3N4 and SBA-15 stabilized the copper clusters, leading to a high GVL yield of 92 % and excellent stability in 100 h. This result is comparable to that of the Ru/AC catalyst but much more economically favorable. Density functional theory calculations revealed that the reaction barrier of the new catalyst was reduced from 1.93 to 1.12 eV compared with those of unconfined copper particles. This research provides a simple anchoring strategy for constructing highly active and inexpensive copper nanocluster catalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据