4.8 Article

Promoted self-construction of β-NiOOH in amorphous high entropy electrocatalysts for the oxygen evolution reaction

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 301, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2021.120764

关键词

High entropy catalysts; Oxygen evolution reaction; Self-construction of beta-NiOOH intermediates; Amorphous nanoporous structure

资金

  1. National Natural Science Foundation of China [51771132]

向作者/读者索取更多资源

Efficient electrocatalysts for the oxygen evolution reaction (OER) are essential for sustainable renewable-energy conversion, with multimetallic catalysts offering flexibility to enhance catalytic activity via synergistic effects. The incorporation of different components such as Mn, Fe, Co, and Al in NiFeCoMnAl oxide catalyst plays a crucial role in improving OER performance, showcasing the importance of each component in achieving superior catalytic activity.
The exploration of an efficient electrocatalyst for the oxygen evolution reaction (OER) is urgently required for sustainable renewable-energy conversion and storage. Due to the increased chemical complexity, multimetallic catalysts provide flexibility to alter their electronic and crystal structure to attain a superior intrinsic catalytic activity via synergistic effects, which is seldom accomplished using single metal catalysts. However, the high chemical complexity increases the difficulty to prepare elemental homogenous catalysts and reveal their synergistic effect during OER process, which further hinder the design of multimetallic catalysts. Here, high entropy concept is utilized to design an NiFeCoMnAl oxide with amorphous structure as OER catalyst. The direct evidence of active Ni sites is provided by the operando Raman measurements and Fe can modify oxygen intermediates binding energy on Ni sites. The X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) reveal that the incorporation of Mn can construct the electron-rich environment of active Ni center, and the relatively lower oxidation state of Ni facilitates the self-construction of beta-NiOOH intermediates, which shows promoted OER activity as confirmed by density functional theory calculations. Doping Co can enhance the conductivity and doping Al leads to the formation of nanoporous structure through dealloying process, thus each component is essential for improving OER performance. The optimized NiFeCoMnAl catalyst exhibits an overpotential of 190 mV at 10 mA cm(-2) in 1 M KOH solution, much superior to the ternary and quaternary counterparts. This work sheds light on understanding the origin of high entropy catalysts' OER activity and thereby enables the rational design of multinary transition metallic catalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据