4.7 Review

Differences in Fosfomycin Resistance Mechanism between Pseudomonas aeruginosa and Enterobacterales

期刊

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AAC.01446-21

关键词

fosfomycin resistance; Pseudomonas aeruginosa; Enterobacterales; Escherichia coli

资金

  1. Merck

向作者/读者索取更多资源

Multidrug-resistant Pseudomonas aeruginosa is a serious public health threat, and fosfomycin may be a therapeutic alternative. However, the lack of susceptibility breakpoints for fosfomycin and various resistance mechanisms limit its clinical use and efficacy.
Multidrug-resistant (MDR) Pseudomonas aeruginosa presents a serious threat to public health due to its widespread resistance to numerous antibiotics. P. aeruginosa commonly causes nosocomial infections including urinary tract infections (UTI) which have become increasingly difficult to treat. The lack of effective therapeutic agents has renewed interest in fosfomycin, an old drug discovered in the 1960s and approved prior to the rigorous standards now required for drug approval. Fosfomycin has a unique structure and mechanism of action, making it a favorable therapeutic alternative for MDR pathogens that are resistant to other classes of antibiotics. The absence of susceptibility breakpoints for fosfomycin against P. aeruginosa limits its clinical use and interpretation due to extrapolation of breakpoints established for Escherichia coli or Enterobacterales without supporting evidence. Furthermore, fosfomycin use and efficacy for treatment of P. aeruginosa are also limited by both inherent and acquired resistance mechanisms. This narrative review provides an update on currently identified mechanisms of resistance to fosfomycin, with a focus on those mediated by P. aeruginosa such as peptidoglycan recycling enzymes, chromosomal Fos enzymes, and transporter mutation. Additional fosfomycin resistance mechanisms exhibited by Enterobacterales, including mutations in transporters and associated regulators, plasmid-mediated Fos enzymes, kinases, and murA modification, are also summarized and contrasted. These data highlight that different fosfomycin resistance mechanisms may be associated with elevated MIC values in P. aeruginosa compared to Enterobacterales, emphasizing that extrapolation of E colt breakpoints to P. aeruginosa should be avoided.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据