4.8 Article

ER-GCaMP6f: An Endoplasmic Reticulum-Targeted Genetic Probe to Measure Calcium Activity in Astrocytic Processes

期刊

ANALYTICAL CHEMISTRY
卷 94, 期 4, 页码 2099-2108

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.1c04321

关键词

-

资金

  1. National Institute for Health [R01 DA041513, DA038817]

向作者/读者索取更多资源

This study developed an endoplasmic reticulum-targeted calcium indicator, ER-GCaMP6f, which enables the measurement of signaling in close proximity to the endoplasmic reticulum in astrocytes. By utilizing microscopy techniques, the researchers demonstrated the localization of the indicator in astrocyte cell soma and processes, and detected calcium fluctuations in small astrocytic processes that were not observable with existing indicators. ER-GCaMP6f also identified dynamics in calcium signaling of endoplasmic reticulum resident receptors that were missed by other indicators.
Ca2+ is a major second messenger involved in cellular and subcellular signaling in a wide range of cells, including astrocytes, which use calcium ions to communicate with other cells in the brain. Even though a variety of genetically encoded Ca2+ indicators have been developed to study astrocyte calcium signaling, understanding the dynamics of endoplasmic reticulum calcium signaling is greatly limited by the currently available tools. To address this, we developed an endoplasmic reticulum-targeted calcium indicator, ER-GCaMP6f, which is anchored to the cytosolic side of the organelle and measures signaling that occurs in close proximity to the endoplasmic reticulum of astrocytes. Using a combination of confocal and super-resolution microscopy techniques, we demonstrate the localization of the indicator in the endoplasmic reticulum in both cell soma and processes of astrocytes. Combining ER-GCaMP6f with total internal reflection fluorescence microscopy, we show that Ca2+ fluctuations in small astrocytic processes can be detected, which are otherwise not observable with existing indicators and standard wide-field and confocal techniques. We also compared the ER-GCaMP6f indicator against currently used plasma membrane-tethered and cytosolic GCaMP6f indicators. ER-GCaMP6f identifies dynamics in calcium signaling of endoplasmic reticulum resident receptors that are missed by plasma membrane-anchored indicators. We also generated an adeno-associated virus (AAV5) and demonstrate that ER-GCaMP6f can be expressed in vivo and by measured calcium activity in brain slices. ER-GCaMP6f provides a powerful tool to study calcium signaling in close proximity to the endoplasmic reticulum in astrocyte cell soma and processes both in culture and in brain slices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据